圆锥曲线116.抛物线C的方程为,过抛物线C上一点P(x0,y0)(x0≠0)作斜率为k1,k2的两条直线分别交抛物线C于A(x1,y1)B(x2,y2)两点(P,A,B三点互不相同),且满足.(Ⅰ)求抛物线C的焦点坐标和准线方程;(Ⅱ)设直线AB上一点M,满足,证明线段PM的中点在y轴上;(Ⅲ)当=1时,若点P的坐标为(1,-1),求∠PAB为钝角时点A的纵坐标的取值范围.设点的坐标为,由,则.将③式和⑥式代入上式得,即.∴线段的中点在轴上.(Ⅲ)因为点在抛物线上,所以,抛物线方程为.由③式知,代入得.将代入⑥式得,代入得.因此,直线、分别与抛物线的交点、的坐标为,.于是,,.因为钝角且、、三点互不相同,故必有.求得的取值范围是或.又点的纵坐标满足,故当时,;当时,.即7.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作MN⊥FA,垂足为N,求点N的坐标;(3)以M为圆心,MB为半径作圆M.当K(m,0)是x轴上一动点时,丫讨论直线AK与圆M的位置关系.由题意得,,圆M.的圆心是点(0,2),半径为2,当m=4时,直线AK的方程为x=4,此时,直线AK与圆M相离.当m≠4时,直线AK的方程为y=(x-m),即为4x-(4-m)y-4m=0,圆心M(0,2)到直线AK的距离d=,令d>2,解得m>1∴当m>1时,AK与圆M相离;当m=1时,AK与圆M相切;当m<1时,AK与圆M相交.8.点A、B分别是椭圆长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于轴上方,。(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于,求椭圆上的点到点M的距离的最小值。(2)直线AP的方程是-+6=0.设点M(,0),则M到直线AP的距离是.于是=,又-6≤≤6,解得=2.椭圆上的点(,)到点M的距离有,由于-6≤≤6,∴当=时,d取得最小值9.已知动圆过定点,且与直线相切,其中.(I)求动圆圆心的轨迹的方程;(II)设A、B是轨迹上异于原点的两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.(1)当时,即时,所以,所以由①知:所以因此直线的方程可表示为,即所以直线恒过定点(2)当时,由,得==将①式代入上式整理化简可得:,所以,此时,直线的方程可表示为即所以直线恒过定点所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点.10.已知椭圆的中心为坐标原点O,焦点在轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线。(Ⅰ)求椭圆的离心率;(Ⅱ)设M为椭圆上任意一点,且,证明为定值。(II)证明:(1)知,所以椭圆可化为设,由已知得