圆锥曲线0545.已知三点P(5,2)、(-6,0)、(6,0).(Ⅰ)求以、为焦点且过点P的椭圆的标准方程;(Ⅱ)设点P、、关于直线y=x的对称点分别为、、,求以、为焦点且过点的双曲线的标准方程。本小题主要考查椭圆与双曲线的基本概念、标准方程、几何性质等基础知识和基本运算能力。46.如图,椭圆的右焦点为,过点的一动直线绕点转动,并且交椭圆于两点,为线段的中点.(1)求点的轨迹的方程;OPAFBDxy(2)若在的方程中,令,.设轨迹的最高点和最低点分别为和.当为何值时,为一个正三角形?解:如图,(1)设椭圆Q:(ab0)上的点A(x1,y1)、B(x2,y2),又设P点坐标为P(x,y),则1当AB不垂直x轴时,x1x2,由(1)-(2)得b2(x1-x2)2x+a2(y1-y2)2y=0b2x2+a2y2-b2cx=0…………(3)2当AB垂直于x轴时,点P即为点F,满足方程(3)故所求点P的轨迹方程为:b2x2+a2y2-b2cx=047.已知点,是抛物线上的两个动点,是坐标原点,向量,满足.设圆的方程为(I)证明线段是圆的直径;(II)当圆C的圆心到直线X-2Y=0的距离的最小值为时,求P的值。【解析】(I)证明1:整理得:设M(x,y)是以线段AB为直径的圆上的任意一点,则即整理得:故线段是圆的直径证明3:整理得:……(1)以线段AB为直径的圆的方程为展开并将(1)代入得:故线段是圆的直径(II)解法1:设圆C的圆心为C(x,y),则又因所以圆心的轨迹方程为设圆心C到直线x-2y=0的距离为d,则当y=p时,d有最小值,由题设得.设直线x-2y+m=0到直线x-2y=0的距离为,则因为x-2y+2=0与无公共点,所以当x-2y-2=0与仅有一个公共点时,该点到直线x-2y=0的距离最小值为将(2)代入(3)得解法3:设圆C的圆心为C(x,y),则圆心C到直线x-2y=0的距离为d,则又因