(数学必修2)第三章直线与方程[基础训练A组]一、选择题1.设直线0axbyc的倾斜角为,且sincos0,则,ab满足()A.1baB.1baC.0baD.0ba2.过点(1,3)P且垂直于直线032yx的直线方程为()A.012yxB.052yxC.052yxD.072yx3.已知过点(2,)Am和(,4)Bm的直线与直线012yx平行,则m的值为()A.0B.8C.2D.104.已知0,0abbc,则直线axbyc通过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5.直线1x的倾斜角和斜率分别是()A.045,1B.0135,1C.090,不存在D.0180,不存在6.若方程014)()32(22mymmxmm表示一条直线,则实数m满足()A.0mB.23mC.1mD.1m,23m,0m二、填空题1.点(1,1)P到直线10xy的距离是________________.2.已知直线,32:1xyl若2l与1l关于y轴对称,则2l的方程为__________;若3l与1l关于x轴对称,则3l的方程为_________;若4l与1l关于xy对称,则4l的方程为___________;用心爱心专心13.若原点在直线l上的射影为)1,2(,则l的方程为____________________。4.点(,)Pxy在直线40xy上,则22xy的最小值是________________.5.直线l过原点且平分ABCD的面积,若平行四边形的两个顶点为(1,4),(5,0)BD,则直线l的方程为________________。三、解答题1.已知直线,(1)系数为什么值时,方程表示通过原点的直线;(2)系数满足什么关系时与坐标轴都相交;(3)系数满足什么条件时只与x轴相交;(4)系数满足什么条件时是x轴;(5)设为直线上一点,证明:这条直线的方程可以写成.2.求经过直线0323:,0532:21yxlyxl的交点且平行于直线032yx的直线方程。3.经过点(1,2)A并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程。4.过点(5,4)A作一直线l,使它与两坐标轴相交且与两轴所围成的三角形面积为5.第三章直线和方程[基础训练A组]答案一、选择题1.Dtan1,1,1,,0akababb2.A设20,xyc又过点(1,3)P,则230,1cc,即210xy3.B42,82mkmm4.C,0,0acacyxkbbbb5.C1x垂直于x轴,倾斜角为090,而斜率不存在用心爱心专心26.C2223,mmmm不能同时为0二、填空题1.3221(1)13222d2.234:23,:23,:23,lyxlyxlxy3.250xy'101,2,(1)2(2)202kkyx4.822xy可看成原点到直线上的点的距离的平方,垂直时最短:4222d5.23yx平分平行四边形ABCD的面积,则直线过BD的中点(3,2)三、解答题1.解:(1)把原点(0,0)代入,得0C;(2)此时斜率存在且不为零即0A且0B;(3)此时斜率不存在,且不与y轴重合,即0B且0C;(4)0,AC且0B(5)证明:00Pxy,在直线上00000,AxByCCAxBy000AxxByy。2.解:由23503230xyxy,得1913913xy,再设20xyc,则4713c472013xy为所求。3.解:当截距为0时,设ykx,过点(1,2)A,则得2k,即2yx;当截距不为0时,设1,xyaa或1,xyaa过点(1,2)A,则得3a,或1a,即30xy,或10xy这样的直线有3条:2yx,30xy,或10xy。4.解:设直线为4(5),ykx交x轴于点4(5,0)k,交y轴于点(0,54)k,用心爱心专心314165545,4025102Skkkk得22530160kk,或22550160kk解得2,5k或85k25100xy,或85200xy为所求。用心爱心专心4