电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第三章 函数概念与性质 3.2 函数的基本性质 3.2.2 第1课时 函数奇偶性的概念精品练习(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题VIP免费

高中数学 第三章 函数概念与性质 3.2 函数的基本性质 3.2.2 第1课时 函数奇偶性的概念精品练习(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题_第1页
1/6
高中数学 第三章 函数概念与性质 3.2 函数的基本性质 3.2.2 第1课时 函数奇偶性的概念精品练习(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题_第2页
2/6
高中数学 第三章 函数概念与性质 3.2 函数的基本性质 3.2.2 第1课时 函数奇偶性的概念精品练习(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题_第3页
3/6
第1课时函数奇偶性的概念必备知识基础练知识点一函数奇偶性的判断1.判断下列函数的奇偶性:(1)f(x)=2-|x|;(2)f(x)=+;(3)f(x)=;(4)f(x)=知识点二奇偶函数的图象2.已知函数y=f(x)是偶函数,且图象与x轴有四个交点,则方程f(x)=0的所有实根之和是()A.4B.2C.1D.03.函数f(x)=+x3的图象()A.关于y轴对称B.关于直线y=x对称C.关于坐标原点对称D.关于直线y=-x对称知识点三利用函数的奇偶性求值4.若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________;5.若函数f(x)=为奇函数,则a=________.6.已知f(x)=ax5+bx3+cx-8,且f(d)=10,则f(-d)=________.关键能力综合练一、选择题1.下列函数为奇函数的是()A.y=-|x|B.y=2-xC.y=D.y=-x2+82.函数f(x)=-x的图象关于()A.y轴对称B.直线y=-x对称C.坐标原点对称D.直线y=x对称3.已知f(x)=x5+ax3+bx-2,若f(-3)=10,则f(3)=()A.-8B.18C.10D.-144.若f(x)=ax2+bx+c(c≠0)是偶函数,则g(x)=ax3+bx2+cx()A.是奇函数但不是偶函数B.是偶函数但不是奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数5.已知y=f(x),x∈(-a,a),F(x)=f(x)+f(-x),则F(x)是()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数6.已知定义在R上的偶函数f(x)满足:当x∈[0,+∞)时,f(x)=则f[f(-2)]的值为()A.1B.3C.-2D.-3二、填空题7.设f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+1,则f(-2)+f(0)=________.8.函数f(x)=的定义域为______,为________函数(填“奇”或“偶”).9.(探究题)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=________.三、解答题10.用定义判断下列函数的奇偶性.(1)f(x)=;(2)f(x)=-3x2+1;(3)f(x)=;(4)f(x)=学科素养升级练1.(多选题)对于定义在R上的函数f(x),下面结论正确的是()A.若f(x)是偶函数,则f(-2)=f(2)B.若f(-2)=f(2),则函数f(x)是偶函数C.若f(-2)≠f(2),则函数f(x)不是偶函数D.若f(-2)=f(2),则函数f(x)不是奇函数2.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是()A.|f(x)|-g(x)是奇函数B.f(x)-|g(x)|是奇函数C.|f(x)|+g(x)是偶函数D.f(x)+|g(x)|是偶函数3.(学科素养—数学抽象)已知函数f(x)对一切x、y都有f(x+y)=f(x)+f(y).(1)求证:f(x)是奇函数;(2)若f(-3)=a,试用a表示f(12).3.2.2奇偶性第1课时函数奇偶性的概念必备知识基础练1.解析:(1) 函数f(x)的定义域为R,关于原点对称,又f(-x)=2-|-x|=2-|x|=f(x),∴f(x)为偶函数.(2) 函数f(x)的定义域为{-1,1},关于原点对称,且f(x)=0,又 f(-x)=-f(x),f(-x)=f(x),∴f(x)既是奇函数又是偶函数.(3) 函数f(x)的定义域为{x|x≠1},不关于原点对称,∴f(x)是非奇非偶函数.(4)f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称.当x>0时,-x<0,f(-x)=1-(-2x)=1+2x=f(x);当x<0时,-x>0,f(-x)=1+(-2x)=1-2x=f(x).综上可知,对于x∈(-∞,0)∪(0,+∞),都有f(-x)=f(x),f(x)为偶函数.2.解析:因为f(x)是偶函数,且图象与x轴有四个交点,所以这四个交点每组两个关于y轴一定是对称的,故所有实根之和为0.选D.答案:D3.解析: f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称,且f(-x)=--x3=-f(x),∴f(x)是奇函数,图象关于原点对称.答案:C4.解析: 函数f(x)在[a-1,2a]上是偶函数,∴a-1+2a=0,得a=.又f(-x)=f(x),即x2-bx+1+b=x2+bx+1+b对x∈均成立,∴b=0.答案:05.解析: f(x)为奇函数,∴f(-x)=-f(x),即=-.显然x≠0,整理得x2-(a+1)x+a=x2+(a+1)x+a,故a+1=0,得a=-1.答案:-16.解析:令g(x)=ax5+bx3+cx,则g(x)为奇函数.f(d)=g(d)-8=10,∴g(d)=18,f(-d)=g(-d)-8=-g(d)-8=-26.答案:-26关键能力综合练1.解析:A、D两项,函数均为偶函数,B项中函数为非奇非偶,而C项中函数为奇函数.答案:C2.解...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第三章 函数概念与性质 3.2 函数的基本性质 3.2.2 第1课时 函数奇偶性的概念精品练习(含解析)新人教A版必修第一册-新人教A版高一第一册数学试题

海博书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部