第1课时函数奇偶性的概念[A基础达标]1.下列函数为奇函数的是()A.y=x2+2B.y=x,x∈(0,1]C.y=x3+xD.y=x3+1解析:选C.对于A,f(-x)=(-x)2+2=x2+2=f(x),即f(x)为偶函数;对于B,定义域不关于原点对称,故f(x)既不是奇函数也不是偶函数;对于C,定义域为R,且f(-x)=(-x)3+(-x)=-(x3+x)=-f(x),故f(x)为奇函数;对于D,f(-x)=-x3+1≠f(x)且f(-x)≠-f(x),故f(x)既不是奇函数,也不是偶函数.2.若函数f(x)=(m-1)x2+(m-2)x+(m2-7m+12)为偶函数,则m的值是()A.1B.2C.3D.4解析:选B.因为函数f(x)=(m-1)x2+(m-2)x+(m2-7m+12)为偶函数,所以f(-x)=f(x),即(m-1)x2+(m-2)x+(m2-7m+12)=(m-1)x2+(-m+2)x+(m2-7m+12),即m-2=-m+2,解得m=2.3.设f(x)是定义在R上的一个函数,则函数F(x)=f(x)-f(-x)在R上一定()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数解析:选A.F(-x)=f(-x)-f(x)=-[f(x)-f(-x)]=-F(x),符合奇函数的定义.4.如图,给出奇函数y=f(x)的局部图象,则f(-2)+f(-1)的值为()A.-2B.2C.1D.0解析:选A.由题图知f(1)=,f(2)=,又f(x)为奇函数,所以f(-2)+f(-1)=-f(2)-f(1)=--=-2.故选A.5.如果函数y=是奇函数,则f(x)=________.解析:设x<0,则-x>0,所以2×(-x)-3=-2x-3.又原函数为奇函数,所以f(x)=-(-2x-3)=2x+3.答案:2x+36.已知函数f(x)=ax3+bx++5,满足f(-3)=2,则f(3)的值为________.解析:因为f(x)=ax3+bx++5,所以f(-x)=-ax3-bx-+5,即f(x)+f(-x)=10.所以f(-3)+f(3)=10,又f(-3)=2,所以f(3)=8.答案:87.判断下列函数的奇偶性:(1)f(x)=3,x∈R;(2)f(x)=5x4-4x2+7,x∈[-3,3];(3)f(x)=解:(1)因为f(-x)=3=f(x),所以函数f(x)是偶函数.(2)因为x∈[-3,3],f(-x)=5(-x)4-4(-x)2+7=5x4-4x2+7=f(x),所以函数f(x)是偶函数.(3)当x>0时,f(x)=1-x2,此时-x<0,所以f(-x)=(-x)2-1=x2-1,所以f(-x)=-f(x);当x<0时,f(x)=x2-1,此时-x>0,f(-x)=1-(-x)2=1-x2,所以f(-x)=-f(x);当x=0时,f(-0)=-f(0)=0.综上,对x∈R,总有f(-x)=-f(x),所以函数f(x)为R上的奇函数.8.定义在R上的奇函数f(x)在[0,+∞)上的图象如图所示.(1)补全f(x)的图象;(2)解不等式xf(x)>0.解:(1)描出点(1,1),(2,0)关于原点的对称点(-1,-1),(-2,0),则可得f(x)的图象如图所示.(2)结合函数f(x)的图象,可知不等式xf(x)>0的解集是(-2,0)∪(0,2).[B能力提升]9.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数解析:选C.依题意得对任意x∈R,都有f(-x)=-f(x),g(-x)=g(x),因此,f(-x)·g(-x)=-f(x)·g(x)=-[f(x)·g(x)],f(x)g(x)是奇函数,A错;|f(-x)|·g(-x)=|-f(x)|·g(x)=|f(x)|·g(x),|f(x)|·g(x)是偶函数,B错;f(-x)·|g(-x)|=-f(x)·|g(x)|=-[f(x)|g(x)|],f(x)·|g(x)|是奇函数,C正确;|f(-x)·g(-x)|=|-f(x)g(x)|=|f(x)g(x)|,|f(x)g(x)|是偶函数,D错.故选C.10.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=()A.-3B.-1C.1D.3解析:选C.因为f(x)-g(x)=x3+x2+1,所以f(-x)-g(-x)=-x3+x2+1,又由题意可知f(-x)=f(x),g(-x)=-g(x),所以f(x)+g(x)=-x3+x2+1,则f(1)+g(1)=1,故选C.11.已知奇函数f(x)=(1)求实数m的值,并画出y=f(x)的图象;(2)若函数f(x)在区间[-1,a-2]上单调递增,试确定a的取值范围.解:(1)当x<0时,-x>0,f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x)=-x2-2x,所以f(x)=x2+2x,所以m=2.y=f(x)的图象如图所示.(2)由(1)知f(x)=由图象可知,f(x)在[-1,1]上单调递增,要使f(x)在[-1,a-2]上单调递增,只需解得1