3.1.3二倍角的正弦、余弦、正切公式1课后集训基础达标1.sin2-cos2等于()A.B.C.-D.解析:原式=-(cos2-sin2)=-cos=-.∴应选C.答案:C2.已知sinα+cosα=,则sin2α的值是()A.B.-C.D.-解析:将sinα+cosα=两边平方得:1+sin2α=,∴sin2α=-.应选B.答案:B3.等于()A.-2cos5°B.2cos5°C.-2sin5°D.2sin5°解析:=(cos50°-sin50°)=×(cos45°cos50°-sin45°sin50°)=2cos95°=-2sin5°.∴应选C.答案:C4.sin15°sin30°sin75°的值等于()A.B.C.D.解析:原式=sin15°·sin30°·cos15°=·sin30°·(2sin15°·cos15°)=·sin30°=.答案:C5.cos·cos的值等于()A.B.C.2D.4解析:原式==∴应选A.答案:A6.cos(α+β)cosβ+sin(α+β)sinβ=,则cos2α等于()A.B.C.D.解析:由cos(α+β)cosβ+sin(α+β)sinβ=得:cosα=.∴cos2α=2cos2α-1=2×-1=-,∴应选C.答案:C综合运用7.设f(tanx)=tan2x,则f(2)的值等于()A.B.-C.D.4解析:∵f(tanx)=,∴f(2)==-.∴应选B.答案:B8.(2005全国Ⅲ,8)等于()A.tanαB.tan2αC.1D.解析:原式==tan2α.答案:B9.已知sin(θ-)=,则等于()A.B.±C.D.±解析:∵,由sin(θ-)=,得(sinθ-cosθ)=,两边平方得:sin2θ=,∴cos2θ=±.∴原式=.故应选B.答案:B拓展探究10.化简cosα·cos·cos·cos·…·cos.解析:只要注意到每相邻两角之间具有倍数关系,变用二倍角正弦公式即可.解:原式同乘除因式sin,然后逐次使用倍角公式解得原式=.备选习题11.已知sin(x-)=-,则sin2x的值等于()A.B.C.-D.解析:由于sin2x=cos(-2x)=cos2(-x)=cos2(x-)=1-2sin2(x-)=1-2×()2=.∴应选B.答案:B12.函数y=sin(x-)cosx的最小值是_______________.解析:y=sin(x-)cosx=(sinx·cos-cosx·sin)cosx=sinxcosx-cos2x=sin2x-(1+cos2x)=sin2x-cos2x-=(sin2x-cos2x)-=sin(2x-)-.∴函数最小值为.答案:13.(1)已知sinx=,求sin2(x-)的值.(2)已知sinα+cosα=(0<α<π),求cos2α的值.(3)已知sin(-α)sin(+α)=(0<α<),求sin2α的值.解析:(1)sin2(x-)=sin(2x-)=-sin(-2x)=-cos2x=2sin2x-1=2()2-1=2-.(2)由sinα+cosα=得(sinα+cosα)2=,∴2sinαcosα=.又0<α<π,∴sinα>0,cosα<0.∵(sinα-cosα)2=1-2sinαcosα=1+,∴sinα-cosα=.∴cos2α=cos2α-sin2α=(cosα+sinα)(cosα-sinα)=-×=.(3)∵sin(-α)=sin[-(+α)]=cos(+α)∴=sin(-α)sin(+α)=sin(+α)cos(+α)=sin(+2α)=cos2α.∴cos2α=.∵0<α<,∴0<2α<π.∴sin2α=.14.化简:.解:原式==15.已知tan(α+)=2,则cos2α+3sin2α+tan2α=______________.解析:∵tan(α+)=1+=2,∴tanα=.于是cos2α+3sin2α+tan2α=cos2α-sin2α+3sin2α+=cos2α+2sin2α+=.答案:16.已知cos(+α)=,<α<,求的值.解:sin2α=-cos(+2α)=-cos[2(+α)]=-[2cos2(+α)-1]=-[2×()2-1]=,=tan(+α).∵<α<,∴<+α<2π.∴sin(+α)=-.∴tan(+α)=-.∴.