1.3.1柱体、锥体、台体的表面积与体积A级基础巩固一、选择题1.若圆锥的正视图是正三角形,则它的侧面积是底面积的(C)A.倍B.3倍C.2倍D.5倍[解析]设圆锥的底面半径为r,母线长为l,则由题意知,l=2r,于是S侧=πr·2r=2πr2,S底=πr2.故选C.2.(2018·全国卷Ⅲ理,3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是(A)[解析]观察图形可知,俯视图为,故答案为A.3.(2018·大连海湾高级中学高一检测)圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为(A)A.πB.C.πD.[解析]球的半径为1,圆柱的高的一半为,设圆柱底面半径为R,∴R2+()2=12,∴R2=,故圆柱的体积为πR2·h=π×1=π.4.(2018·本溪一中高一期末)已知某几何体的三视图如图所示,主视图和左视图是腰长为a的等腰直角三角形,俯视图是边长为a的正方形,则该几何体的体积为(A)A.a3B.a3C.a3D.a3[解析]由三视图可得几何体为三棱锥,底面为等腰直角三角形,底面面积为a2,三棱锥的高也为a,故三棱锥体积V=×a2×a=a3.5.如图,点M,N分别是正方体ABCD-A1B1C1D1的棱A1B1,A1D1的中点,用过点A,M,N和点D,N,C1的两个截面截去正方体的两个角后得到的几何体的正(主)视图、侧(左)视图、俯视图依次为(B)A.①③④B.②③④C.①②③D.②④③[解析]由三视图性质可得B.6.(2018·浙江卷,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是(C)A.2B.4C.6D.8[解析]根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上下底分别为1,2,梯形的高为2,因此几何体的体积为×(1+2)×2×2=6.选C.二、填空题7.一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的表面积为_24+2_.[解析]该几何体是三棱柱,且两个底面是边长为2的正三角形,侧面是全等的矩形,且矩形的长是4,宽是2,所以该几何体的表面积为2×(×2×)+3×(4×2)=24+2.8.(2019·天津卷文,12)已知四棱锥的底面是边长为的正方形,侧棱长均为.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__.[解析]如图所示,在四棱锥V-ABCD中,O为正方形ABCD的中心,也是圆柱下底面的中心,由四棱锥底面边长为,可得OC=1.设M为VC的中点,过点M作MO1∥OC交OV于点O1,则O1即为圆柱上底面的中心.∴O1M=OC=,O1O=VO. VO==2,∴O1O=1.可得V圆柱=π·O1M2·O1O=π×()2×1=.三、解答题9.如图所示的几何体是一棱长为4cm的正方体,若在其中一个面的中心位置上,挖一个直径为2cm、深为1cm的圆柱形的洞,求挖洞后几何体的表面积是多少?(π取3.14)[解析]正方体的表面积为4×4×6=96(cm2),圆柱的侧面积为2π×1×1≈6.28(cm2),则挖洞后几何体的表面积约为96+6.28=102.28(cm2).B级素养提升一、选择题1.(2017·浙江,3)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是(A)A.+1B.+3C.+1D.+3[解析]由几何体的三视图可知,该几何体是一个底面半径为1,高为3的圆锥的一半与一个底面为直角边长是的等腰直角三角形,高为3的三棱锥的组合体,∴该几何体的体积V=×π×12×3+××××3=+1.故选A.2.(2018·永春一中高一期末)已知某个几何体的三视图如图(主视图中的弧线是半圆),根据图中标出的尺寸(单位:cm),可得这个几何体的体积是(B)A.8+cm3B.8+πcm3C.12+cm3D.12+πcm3[解析]由三视图可知几何体上半部分是半圆柱,下半部分是正方体,故此几何体体积为V=×2+2×2×2=8+π(cm3).3.(2018·全国卷Ⅰ理,7)某圆柱的高为2,底面周长为16,其三视图如下图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为(B)A.2B.2C.3D.2[解析]根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱...