解决问题综合练习题1.甲、乙两艘轮船分别从两港同时出发相向而行,甲船每小时行18千米,乙船每小时行15千米,经过6小时两艘轮船在途中相遇。两港之间相距多少千米?2.甲、乙两车分别从相距480千米的A、B两城同时出发相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时,两车出发后几小时相遇?3.东、西两镇相距20千米,甲、乙两人分别从两镇同时出发背向而行,甲每小时行的路程是乙的2倍,3小时后两人相距56千米,两人的速度各是多少千米/小时?4.忘欣和陆良两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆良每分钟行90米,如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆良后立即返回跑向王欣,遇到王欣后再立即跑向陆良,这样不断来回,直到两人相遇为止。狗共跑了多少米?5.两队学生从相距18千米的两地出发相向而行,一个同学骑自行车以每小时15千米的速度在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米,两队相遇后,骑自行车的同学共行了多少千米?6.甲、乙两人在环形跑道上以各自不变的速度跑步,如果两人同时同地相背而行,乙跑4分钟后两人第一次相遇,甲跑一周要6分钟,乙跑一周要多少分钟?7.小明和小红两人在环形跑道上以各自不变的速度跑步,如果两人同时同地相背而行,小红跑6分钟后两人第一次相遇,小明跑一周要8分钟,小红跑一周要多少分钟?8.小明骑摩托车,小红骑自行车分别从甲、乙两地同时出发,相向而行。5小时相遇。小红从甲地到乙地需要15小时,小明从乙地到甲地需要几小时?9.甲、乙两人骑车同时从东、西两地相向而行,8小时后相遇,如果甲每小时少行1千米,乙每小时多行3千米,这样经过7小时就可以相遇。东西两地相距多少千米?10.小明和小红分别从甲、乙两地同时出发,相向而行。4小时后相遇,如果两人都比原定速度每小时多行1千米,则3小时相遇,甲、乙两地相距多少千米?11.小明和小红分别从甲、乙两地同时出发,相向而行。4小时后相遇,如果两人都比原定速度每小时少行1千米,则5小时相遇,甲、乙两地相距多少千米?12.甲、乙两车同时从东、西两地相对开出,6小时后相遇,如果甲车每小时少行9千米,乙车每小时多行6千米,这样经过6小时后,两车已行路程是剩下路程的19倍。东、西两地相距多少千米?第13讲鸡兔同笼问题与假设法鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。例1小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。解:有兔(44-2×16)÷(4-2)=6(只),有鸡16-6=10(只)。当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。有鸡(4×16-44)÷(4-2)=10(只),有兔16——10=6(只)。由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。因此这类问题也叫置换问题。例2100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人?分析与解:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100-80=20(人)。同样,也可以假设100人都是小和尚,同学们不妨自己试试。在下...