现代设计理论与方法实验一、实验名称:复合形法参考程序上机实验二、实验目的:1:掌握复合形法优化问题的寻优策略2:能读懂程序并应用程序计算一些目标函数的最优解三、实验流程:1、题目:求如下约束优化问题的最优解F(X)=(x1−3)2+(x2−4)2S.t.g1(X)=x1≥0g2(X)=x2≥0g3(X)=2.5−x1+x2≥0g4(X)=5−x1−x2≥0已知:N=2,x1∈[0,6],x2∈[0,8],取k=4,E1=10−3。2、编写黄金分割法的C语言程序代码;3、利用visualc程序运行C程序代码;#include"math.h"#include"stdio.h"#include"stdlib.h"#defineE10.001#defineep0.00001#definen2#definek4doubleaf;inti,j;doubleX0[n],XX[n],X[k][n],FF[k];doublea[n],b[n];doublerm=2657863.0;doubleF(doubleC[n]){doubleF;F=pow(C[0]-3,2)+pow(C[1]-4,2);returnF;}intcons(doubleD[n]){if((D[0]>=0)&&(D[1]>=0)&&(D[0]<=6)&&(D[1]<=8)&&((2.5-D[0]+D[1])>=0)&&((5-D[0]-D[1])>=0))return1;elsereturn0;}voidbou(){a[0]=0;b[0]=6;a[1]=0;b[1]=8;}doubler(){doubler1,r2,r3,rr;r1=pow(2,35);r2=pow(2,36);r3=pow(2,37);rm=5*rm;if(rm>=r3){rm=rm-r3;}if(rm>=r2){rm=rm-r2;}if(rm>=r1){rm=rm-r1;}rr=rm/r1;returnrr;}voidproduce(doubleA[n],doubleB[n]){intjj;doubleS;sl:for(i=0;i=F(Xh)){if(af<=ep){for(i=0;i