第二章圆锥曲线与方程人教A版选修2-1人教A版选修2-1学易同步精品课堂2.3.1双曲线及其标准方程学习目标:1.理解双曲线的定义、几何图形和标准方程的推导过程.(重点)2.掌握双曲线的标准方程及其求法.(重点)3.会利用双曲线的定义和标准方程解决简单的问题.(难点)[自主预习·探新知]1.双曲线的定义把平面内与两个定点F1,F2距离的等于非零常数(小于|F1F2|)的点的轨迹叫做双曲线,这叫做双曲线的焦点,叫做双曲线的焦距.差的绝对值两个定点两焦点间的距离思考:(1)双曲线定义中,将“小于|F1F2|”改为“等于|F1F2|”或“大于|F1F2|”的常数,其他条件不变,点的轨迹是什么?(2)双曲线的定义中,若|MF1|-|MF2|=2a(常数),且2a<|F1F2|,则点M的轨迹是什么?[提示](1)当距离之差的绝对值等于|F1F2|时,动点的轨迹是两条射线,端点分别是F1,F2,当距离之差的绝对值大于|F1F2|时,动点的轨迹不存在.(2)点M在双曲线的右支上.2.双曲线的标准方程焦点在x轴上焦点在y轴上标准方程(a>0,b>0)(a>0,b>0)焦点F1,F2F1,F2a,b,c的关系c2=(-c,0)(c,0)(0,-c)(0,c)a2+b2y2a2-x2b2=1x2a2-y2b2=1[基础自测]1.思考辨析(1)在双曲线标准方程中,a,b,c之间的关系与椭圆中a,b,c之间的关系相同.()(2)点A(1,0),B(-1,0),若|AC|-|BC|=2,则点C的轨迹是双曲线.()(3)在双曲线标准方程x2a2-y2b2=1中,a>0,b>0,且a≠b.()[答案](1)×(2)×(3)×2.双曲线x210-y22=1的焦距为()A.32B.42C.33D.43D[c2=10+2=12,所以c=23,从而焦距为43.]3.已知双曲线的a=5,c=7,则该双曲线的标准方程为()A.x225-y224=1B.y225-x224=1C.x225-y224=1或y225-x224=1D.x225-y224=0或y225-x224=0C[b2=c2-a2=72-52=24,故选C.][合作探究·攻重难]双曲线的定义及应用例1、若F1,F2是双曲线x29-y216=1的两个焦点.(1)若双曲线上一点M到它的一个焦点的距离等于16,求点M到另一个焦点的距离.(2)若点P是双曲线上的一点,且∠F1PF2=60°,求△F1PF2的面积.[思路探究](1)直接利用定义求解.(2)在△F1PF2中利用余弦定理求|PF1|·|PF2|.[解](1)设|MF1|=16,根据双曲线的定义知||MF2|-16|=6,即|MF2|-16=±6.解得|MF2|=10或|MF2|=22.(2)由x29-y216=1,得a=3,b=4,c=5.由定义和余弦定理得|PF1|-|PF2|=±6,|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos60°,所以102=(|PF1|-|PF2|)2+|PF1|·|PF2|,所以|PF1|·|PF2|=64,∴S△F1PF2=12|PF1|·|PF2|·sin∠F1PF2=12×64×32=163.[规律方法]求双曲线中的焦点三角形△PF1F2面积的方法(1)①根据双曲线的定义求出||PF1|-|PF2||=2a;②利用余弦定理表示出|PF1|、|PF2|、|F1F2|之间满足的关系式;③通过配方,整体的思想求出|PF1|·|PF2|的值;④利用公式S△PF1F2=12×|PF1|·|PF2|sin∠F1PF2求得面积.(2)利用公式S△PF1F2=12×|F1F2|×|yP|求得面积.[跟踪训练]1.(1)已知定点F1(-2,0),F2(2,0),在平面内满足下列条件的动点P的轨迹中为双曲线的是()A.|PF1|-|PF2|=±3B.|PF1|-|PF2|=±4C.|PF1|-|PF2|=±5D.|PF1|2-|PF2|2=±4A[|F1F2|=4,根据双曲线的定义知选A.](2)已知定点A的坐标为(1,4),点F是双曲线x24-y212=1的左焦点,点P是双曲线右支上的动点,则|PF|+|PA|的最小值为________.9[由双曲线的方程可知a=2,设右焦点为F1,则F1(4,0).|PF|-|PF1|=2a=4,即|PF|=|PF1|+4,所以|PF|+|PA|=|PF1|+|PA|+4≥|AF1|+4,当且仅当A,P,F1三点共线时取等号,此时|AF1|=4-12+42=25=5,所以|PF|+|PA|≥|AF1|+4=9,即|PF|+|PA|的最小值为9.]求双曲线的标准方程例2、根据下列条件,求双曲线的标准方程:(1)a=4,经过点A1,-4103;(2)与双曲线x216-y24=1有相同的焦点,且经过点(32,2);(3)过点P3,154,Q-163,5且焦点在坐标轴上.[思路探究](1)结合a的值设出标准方程的两种形式,将点A的坐标代入求解.(2)因为焦点相同,所以所求双曲线的焦点也在x轴上,且c2=16+4=20,利用待定系数法求解,或设出统一方程求解.(3)双曲线焦点...