2013届高三理科数学小综合专题练习——概率统计一、选择题1.设随机变量,且,则实数的值为A.4B.6C.8D.102.从1,2,3,4,5中任取2各不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B︱A)=A.B.C.D.3.右图是,两组各名同学体重(单位:)数据的茎叶图.设,两组数据的平均数依次为和,标准差依次为和,那么(注:标准差,其中为的平均数)A.,B.,C.,D.,4.某产品的广告费用x与销售额y的统计数据如下表广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元B.65.5万元C.67.7万元D.72.0万元5.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为和.则A.B.C.D.以上三种情况都有可能二、填空题16.某校要从名男生和名女生中选出人担任某游泳赛事的志愿者工作,则在选出的志愿者中,男、女都有的概率为______(结果用数值表示).7.三位同学参加跳高、跳远、铅球项目的比赛.若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是_____(结果用最简分数表示).8.在面积为1的正方形内部随机取一点,则的面积大于等于的概率是_________.9.已知离散型随机变量的分布列如右表.若,,则,.10.老师在一次作业中,要求学生做试卷里10道考题中的6道,并且要求在后5题中不少于3道题,则考生答题的不同选法种类有种.三、解答题11.电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图.将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(1)根据已知条件完成下面的列联表,并据此资料判断:能否在犯错误的概率不超过5%的前提下,认为“体育迷”与性别有关?(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为.若每次抽取的结果是相互独立的,求X的分布列,期望和方差.非体育迷体育迷合计男女1055合计2其中参考数据:0.0500.0100.0013.8416.63510.82812.汕头市澄海区以塑料玩具为主要出口产品,塑料厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(1)若厂家库房中的每件产品合格的概率为0.8,从中任意取出3件进行检验.求恰有1件是合格品的概率;(2)若厂家发给商家20件产品,其中有3件不合格,按合同规定,该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收,求该商家可能检验出不合格产品数的分布列及期望E,并指出该商家拒收这批产品的概率。13.某市四所中学报名参加某高校今年自主招生的学生人数如下表所示:为了了解参加考试的学生的学习状况,该高校采用分层抽样的方法从报名参加考试的四所中学的学生当中随机抽取50名参加问卷调查.(1)问四所中学各抽取多少名学生?(2)从参加问卷调查的名学生中随机抽取两名学生,求这两名学生来自同一所中学的概率;(3)在参加问卷调查的名学生中,从来自两所中学的学生当中随机抽取两名学生,用表示抽得中学的学生人数,求的分布列.中学人数314.甲、乙、丙三名优秀的大学毕业生参加一所重点中学的招聘面试,面试合格者可以签约。甲表示只要面试合格就签约,乙与丙则约定,两个面试都合格就一同签约,否则两人都不签约。设每个人面试合格的概率都是P,且面试是否合格互不影响。已知至少有1人面试合格概率为。(1)求P;(2)求签约人数的分布列和数学期望值。15.乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为,各次发球的胜负结果相互独立,.甲、乙的一局比赛中,甲先发球.(1)求开始第4次发球时,甲、...