第4课时电磁感应中的动力学和能量问题【考纲解读】1.能解决电磁感应问题中涉及安培力的动态分析和平衡问题.2.会分析电磁感应问题中的能量转化,并会进行有关计算.【知识要点】一.电磁感应中的动力学问题分析1.导体的两种运动状态(1)导体的平衡状态——静止状态或匀速直线运动状态.处理方法:根据平衡条件(合外力等于零)列式分析.(2)导体的非平衡状态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.2.电磁感应中的动力学问题分析思路(1)电路分析:导体棒相当于电源,感应电动势相当于电源的电动势,导体棒的电阻相当于电源的内阻,感应电流I=.(2)受力分析:导体棒受到安培力及其他力,安培力F安=BIL或,根据牛顿第二定律列动力学方程:F合=ma.(3)过程分析:由于安培力是变力,导体棒做变加速或变减速运动,当加速度为零时,达到稳定状态,最后做匀速直线运动,根据共点力平衡条件列平衡方程F合=0.二.电磁感应中的能量问题1.过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功,将其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.(3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,或通过电阻发热的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2.求解思路(1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行计算.(2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.三.动力学和能量观点的综合应用根据杆的数目,对于“导轨+杆”模型题目,又常分为单杆模型和双杆模型.(1)单杆模型是电磁感应中常见的物理模型,此类问题所给的物理情景一般是导体棒垂直切割磁感线,在安培力、重力、摩擦力、拉力作用下的变加速直线运动或匀速直线运动,所涉及的知识有牛顿运动定律、功能关系、能量守恒定律等.此类问题的分析要抓住三点:①杆的稳定状态一般是匀速运动(达到最大速度或最小速度,此时合力为零).②整个电路产生的电能等于克服安培力所做的功.③电磁感应现象遵从能量守恒定律.(2)双杆类问题可分为两种情况:一是“假双杆”,甲杆静止不动,乙杆运动.其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止、受力平衡.另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减.线框进入磁场和离开磁场的过程和单杆的运动情况相同,在磁场中运动的过程与双杆的运动情况相同.【典型例题】例1.如图所示,MN、PQ为足够长的平行金属导轨,间距L=0.50m,导轨平面与水平面间夹角θ=37°,N、Q间连接一个电阻R=5.0Ω,匀强磁场垂直于导轨平面向上,磁感应强度B=1.0T.将一根质量为m=0.050kg的金属棒放在导轨的ab位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd处时,其速度大小开始保持不变,位置cd与ab之间的距离s=2.0m.已知g=10m/s2,sin37°=0.60,cos37°=0.80.求:(1)金属棒沿导轨开始下滑时的加速度大小;(2)金属棒到达cd处的速度大小;(3)金属棒由位置ab运动到cd的过程中,电阻R产生的热量.1例2.(2014·新课标Ⅱ·25)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B,方向竖直向下.在内圆导轨的C点和外圆导轨的D点之间接有一阻值为R的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动...