星期四(函数与导数)2017年____月____日函数与导数(命题意图:考查函数的极值、单调性、最值及不等式恒成立等)(本小题满分12分)已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.(1)求实数a的值;(2)若k∈Z,且k<对任意x>1恒成立,求k的最大值.解(1)因为f(x)=ax+xlnx,所以f′(x)=a+lnx+1.因为函数f(x)=ax+xlnx的图象在点x=e处的切线斜率为3,所以f′(e)=3,即a+lne+1=3,所以a=1.(2)由(1)知,f(x)=x+xlnx,又k<=对任意x>1恒成立,令g(x)=,则g′(x)=,令h(x)=x-lnx-2(x>1),则h′(x)=1-=>0,所以函数h(x)在(1,+∞)上单调递增.因为h(3)=1-ln3<0,h(4)=2-2ln2>0,所以方程h(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4).当1<x<x0时,h(x)<0,即g′(x)<0;当x>x0时,h(x)>0,即g′(x)>0,所以函数g(x)=在(1,x0)上单调递减,在(x0,+∞)上单调递增,所以[g(x)]min=g(x0)===x0,所以k<[g(x)]min=x0∈(3,4),故整数k的最大值是3.