电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

创新设计(全国通用)高考数学二轮复习 专题三 数列 第1讲 等差数列、等比数列的基本问题训练 文-人教版高三全册数学试题VIP免费

创新设计(全国通用)高考数学二轮复习 专题三 数列 第1讲 等差数列、等比数列的基本问题训练 文-人教版高三全册数学试题_第1页
1/3
创新设计(全国通用)高考数学二轮复习 专题三 数列 第1讲 等差数列、等比数列的基本问题训练 文-人教版高三全册数学试题_第2页
2/3
创新设计(全国通用)高考数学二轮复习 专题三 数列 第1讲 等差数列、等比数列的基本问题训练 文-人教版高三全册数学试题_第3页
3/3
专题三数列第1讲等差数列、等比数列的基本问题训练文一、选择题1.在等差数列{an}中,a1+3a3+a15=10,则a5的值为()A.2B.3C.4D.5解析设数列{an}的公差为d,∵a1+a15=2a8,∴2a8+3a3=10,∴2(a5+3d)+3(a5-2d)=10,∴5a5=10,∴a5=2.答案A2.设等比数列{an}的前n项和为Sn,若Sm-1=5,Sm=-11,Sm+1=21,则m等于()A.3B.4C.5D.6解析由已知得Sm-Sm-1=am=-16,Sm+1-Sm=am+1=32,故公比q=-2,又Sm==-11,故a1=-1,又am=a1qm-1=-16,代入可求得m=5.答案C3.等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn等于()A.n(n+1)B.n(n-1)C.D.解析由a2,a4,a8成等比数列,得a=a2a8,即(a1+6)2=(a1+2)(a1+14),∴a1=2.∴Sn=2n+×2=2n+n2-n=n(n+1).答案A4.设各项都是正数的等比数列{an},Sn为前n项和,且S10=10,S30=70,那么S40等于()A.150B.-200C.150或-200D.400或-50解析依题意,数列S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30.又S20>0,因此S20=30,S20-S10=20,S30-S20=40,则S40=S30+=70+=150.答案A5.(2015·浙江卷)已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则()1A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>0解析∵a3,a4,a8成等比数列,∴(a1+3d)2=(a1+2d)·(a1+7d),整理得a1=-d,∴a1d=-d2<0,又S4=4a1+d=-,∴dS4=-<0,故选B.答案B二、填空题6.(2016·江苏卷)已知{an}是等差数列,Sn是其前n项和.若a1+a=-3,S5=10,则a9的值是________.解析设等差数列{an}公差为d,由题意可得:解得则a9=a1+8d=-4+8×3=20.答案207.若数列{an}的前n项和Sn=an+,则{an}的通项公式是________.解析当n≥2时,Sn-1=an-1+,∴an=Sn-Sn-1=an+-an-1-=an-an-1.∴an=-2an-1,又n=1时,a1=1,∴数列{an}是以1为首项,-2为公比的等比数列,所以an=(-2)n-1.答案an=(-2)n-18.(2015·全国Ⅱ卷)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=____________.解析由题意,得S1=a1=-1,又由an+1=SnSn+1,得Sn+1-Sn=SnSn+1,所以Sn≠0,所以=1,即-=-1,故数列是以=-1为首项,-1为公差的等差数列,得=-1-(n-1)=-n,所以Sn=-.答案-三、解答题9.(2016·全国Ⅰ卷)已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=,anbn+1+bn+1=nbn.2(1)求{an}的通项公式;(2)求{bn}的前n项和.解(1)由已知,a1b2+b2=b1,b1=1,b2=,得a1=2.所以数列{an}是首项为2,公差为3的等差数列,通项公式为an=3n-1.(2)由(1)和anbn+1+bn+1=nbn得bn+1=,因此{bn}是首项为1,公比为的等比数列.记{bn}的前n项和为Sn,则Sn==-.10.(2016·洛阳模拟)已知数列{an}满足a1=1,an+1=3an+1,(1)证明是等比数列,并求{an}的通项公式;(2)证明++…+<.证明(1)由an+1=3an+1,得an+1+=3.又a1+=,所以是首项为,公比为3的等比数列.an+=,因此{an}的通项公式为an=.(2)由(1)知=.因为当n≥1时,3n-1≥2×3n-1,所以≤=.于是++…+≤1++…+=<.所以++…+<.11.(2016·泉州二模)已知等比数列{an}满足:|a2-a3|=10,a1a2a3=125.(1)求数列{an}的通项公式;(2)是否存在正整数m,使得++…+≥1?若存在,求m的最小值;若不存在,说明理由.解(1)设等比数列{an}的公比为q,则由已知可得解得或故an=·3n-1或an=-5·(-1)n-1.(2)若an=·3n-1,则=,则是首项为,公比为的等比数列.从而==·<<1.若an=-5·(-1)n-1,则=-(-1)n-1,故是首项为-,公比为-1的等比数列,从而=故<1.综上,对任何正整数m,总有<1.故不存在正整数m,使得++…+≥1成立.3

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

创新设计(全国通用)高考数学二轮复习 专题三 数列 第1讲 等差数列、等比数列的基本问题训练 文-人教版高三全册数学试题

您可能关注的文档

雨丝书吧+ 关注
实名认证
内容提供者

乐于和他人分享知识,从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部