分类讨论的思想方法(1)-----应用篇一、知识要点概述1.分类讨论的思想方法的原理及作用:在研究与解决数学问题时,如果问题不能以统一的同一种方法处理或同一种形式表述、概括,可根据数学对象的本质属性的相同和不同点,按照一定的原则或某一确定的标准,在比较的基础上,将数学对象划分为若干既有联系又有区别的部分,然后逐类进行讨论,再把这几类的结论汇总,从而得出问题的答案,这种研究解决问题的思想方法就是分类讨论的思想方法.分类讨论的思想方法是中学数学的基本方法之一,在近几年的高考试题中都把分类讨论思想方法列为重要的思想方法来考查,体现出其重要的位置.分类讨论的思想方法不仅具有明显的逻辑性、题型覆盖知识点较多、综合性强等特点,而且还有利于对学生知识面的考查、需要学生有一定的分析能力、一定分类技巧,对学生能力的考查有着重要的作用.分类讨论的思想的实质就是把数学问题中的各种限制条件的制约及变动因素的影响而采取的化整为零、各个突破的解题手段.2.引起分类讨论的原因主要是以下几个方面:①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。二、解题方法指导1.分类讨论的思想方法的步骤:(1)确定标准;(2)合理分类;(3)逐类讨论;(4)归纳总结.2.简化分类讨论的策略:(1)消去参数;(2)整体换元;(3)变更主元;(4)考虑反面;(5)整体变形;(6)数形结合;(7)缩小范围等.3.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”4.解题时把好“四关”(1)要深刻理解基本知识与基本原理,把好“基础关”;(2)要找准划分标准,把好“分类关”;(3)要保证条理分明,层次清晰,把好“逻辑关”;(4)要注意对照题中的限制条件或隐含信息,合理取舍,把好“检验关”.三、分类讨论的几点注意1.分类讨论的对象是用字母表示的数,一般为变量,当然也不排除为常量的可能.【例1】设0
0且a≠1,比较与的大小.分析:比较对数大小,运用对数函数的单调性,而单调性与底数a有关,所以对底数a分两类情况进行讨论.解: 01.(1)当00,loga(1+x)<0,所以用心爱心专心=loga(1-x)-[-loga(1+x)]=loga(1-x2)>0;(2)当a>1时,loga(1-x)<0,loga(1+x)>0,所以=-loga(1-x2)>0.由(1)、(2)可知,【点评】本题要求对对数函数y=logax的单调性的两种情况十分熟悉,即当a>1时其是增函数,当0