2015-2016学年辽宁省实验中学分校高三(上)12月月考数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分.)1.已知命题p:∀x∈R,sinx≤1,则¬p为()A.∃x∈R,sinx≥1B.∀x∈R,sinx≥1C.∃x∈R,sinx>1D.∀x∈R,sinx>12.设集合A={x|2x≤4},集合B={x|y=lg(x﹣1)},则A∩B等于()A.(1,2)B.[1,2]C.[1,2)D.(1,2]3.已知函数f(x)=4x2﹣mx+5在区间[﹣2,+∞)上是增函数,则f(1)的范围是()A.f(1)≥25B.f(1)=25C.f(1)≤25D.f(1)>254.计算sin77°cos47°﹣sin13°cos43°的值等于()A.B.C.D.5.在△ABC中,AB=4,AC=6,=2,则BC=()A.4B.C.D.166.已知向量=(1,2),向量=(x,﹣2),且⊥(﹣),则实数x等于()A.﹣4B.4C.0D.97.设数列{an}的前n项和为Sn,且Sn=2(an﹣1),则an=()A.2nB.2n﹣1C.2nD.2n﹣18.设变量x,y满足约束条件则目标函数z=2x+4y的最大值为()A.10B.12C.13D.149.要得到的图象,只需把y=sin2x的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度10.已知一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图均为正方形,那么该几何体的表面积是()A.16B.C.20D.1611.抛物线y=ax2的准线方程是y=1,则a的值为()A.B.C.4D.﹣412.已知函数,则方程f(x)=ax恰有两个不同的实根时,实数a的取值范围是(注:e为自然对数的底数)()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)13.已知中心在原点的双曲线C的右焦点为(2,0),右顶点为,则双曲线C的方程.14.圆心在直线2x﹣y﹣7=0上的圆C与y轴交于两点A(0,﹣4)、B(0,﹣2),则圆C的方程为.15.给出下列四个命题:①当x>0且x≠1时,有lnx+≥2;②△ABC中,sinA>sinB当且仅当A>B;③已知Sn是等差数列{an}的前n项和,若S7>S5,则S9>S3;④函数y=f(1+x)与函数y=f(1﹣x)的图象关于直线x=1对称.其中正确命题的序号为.16.已知m,n∈R+,m≠n,x,y∈(0,+∞),则有+≥,且当=时等号成立,利用此结论,可求函数f(x)=+,x∈(0,1)的最小值为.三、解答题(本大题共6个小题,满分70分.解答应写出必要的文字说明、证明过程或演算步骤.请将解答过程写在答题纸的相应位置.)17.设a>b,b>0,且a+b=2.(1)求a•b的最大值;(2)求最小值.18.已知函数f(x)=sin2x﹣cos2x﹣,(x∈R)(1)当x∈[﹣,]时,求函数f(x)的最小值和最大值;(2)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=,f(C)=0,若向量=(1,sinA)与向量=(2,sinB)共线,求a,b的值.19.已知等比数列{an}的前n项和为Sn,且Sn=2n+k.(1)求k的值及数列{an}的通项公式an;(2)求数列{}的前n项和Tn.20.已知四边形ABCD满足AD∥BC,BA=AD=DC=BC=a,E是BC的中点,将△BAE沿着AE翻折成△B1AE,使面B1AE⊥面AECD,F,G分别为B1D,AE的中点.(Ⅰ)求三棱锥E﹣ACB1的体积;(Ⅱ)证明:B1E∥平面ACF;(Ⅲ)证明:平面B1GD⊥平面B1DC.21.已知椭圆的离心率,过点A(0,﹣b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.22.已知函数f(x)=+x+lnx,a∈R.(Ⅰ)设曲线y=f(x)在x=1处的切线与直线x+2y﹣1=0平行,求此切线方程;(Ⅱ)当a=0时,令函数g(x)=f(x)﹣﹣x(b∈R且b≠0),求函数g(x)在定义域内的极值点;(Ⅲ)令h(x)=+x,对∀x1,x2∈[1,+∞)且x1<x2,都有h(x1)﹣h(x2)<lnx2﹣lnx1成立,求a的取值范围.2015-2016学年辽宁省实验中学分校高三(上)12月月考数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.)1.已知命题p:∀x∈R,sinx≤1,则¬p为()A.∃x∈R,sinx≥1B.∀x∈R,sinx≥1C.∃x∈R,sinx>1D.∀x∈R,sinx>1【考点】命题的否定.【专题】简易逻辑.【分析】根据全称命题的否定是特称命题可得命...