课时作业(三十二)数列的综合应用A级1.已知数列{an}的前n项和为Sn,过点P(n,Sn)和Q(n+1,Sn+1)(n∈N*)的直线的斜率为3n-2,则a2+a4+a5+a9的值等于()A.52B.40C.26D.202.已知数列{an},{bn}都是公差为1的等差数列,其首项分别为a1,b1,且a1+b1=5,a1>b1,a1,b1∈N*(n∈N*),则数列{abn}的前10项的和等于()A.65B.75C.85D.953.已知数列{an},{bn}满足a1=1且an,an+1是函数f(x)=x2-bnx+2n的两个零点,则b10等于()A.24B.32C.48D.644.设{an}是各项为正数的无穷数列,Ai是边长为ai,ai+1的矩形的面积(i=1,2,…),则{An}为等比数列的充要条件为()A.{an}是等比数列B.a1,a3,…,a2n-1,…或a2,a4,…,a2n,…是等比数列C.a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列D.a1,a3,…,a2n-1,…和a2,a4,…,a2n,…均是等比数列,且公比相同5.小王每月除去所有日常开支,大约结余a元.小王决定采用零存整取的方式把余钱积蓄起来,每月初存入银行a元,存期1年(存12次),到期取出本金和利息.假设一年期零存整取的月利率为r,每期存款按单利计息.那么,小王存款到期利息为________元.6.若数列{an}满足-=d(n∈N*,d为常数),则称数列{an}为“调和数列”.已知数列为“调和数列”,且x1+x2+…+x20=200,则x3x18的最大值是________.7.在等比数列{an}中,an>0(n∈N+),公比q∈(0,1),且a1a5+2a3a5+a2a8=25,又a3与a5的等比中项为2.(1)求数列{an}的通项公式;(2)设bn=log2an,数列{bn}的前n项和为Sn,当++…+取最大值时,求n的值.8.已知数列{an}满足a1=1,an+1=.(1)求a2,a3;(2)设bn=a2n-2,n∈N*,求证:数列{bn}是等比数列,并求其通项公式;(3)已知cn=log|bn|,求证:++…+<1.1B级1.祖国大陆允许台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理审批一站式服务,某台商到大陆一创业园投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元,设f(n)表示前n年的纯收入.(f(n)=前n年的总收入-前n年的总支出-投资额)(1)从第几年开始获取纯利润?(2)若干年后,该台商为开发新项目,有两种处理方案:①年平均利润最大时以48万美元出售该厂;②纯利润总和最大时,以16万美元出售该厂,问哪种方案最合算?22.已知数列{an}中,a1=1,a2=3,且an+1=an+2an-1(n≥2).(1)设bn=an+1+λan,是否存在实数λ,使数列{bn}为等比数列.若存在,求出λ的值,若不存在,请说明理由;(2)求数列{an}的前n项和Sn.详解答案课时作业(三十二)A级1.B由题意,知=3n-2,∴Sn+1-Sn=3n-2,即an+1=3n-2,∴an=3n-5,因此数列{an}是等差数列,a5=10,∴a2+a4+a5+a9=2(a3+a7)=4a5=40.2.C应用等差数列的通项公式得an=a1+n-1,bn=b1+n-1,∴abn=a1+bn-1=a1+(b1+n-1)-1=a1+b1+n-2=5+n-2=n+3,∴数列{abn}也是等差数列,且前10项和为=85.3.D依题意有anan+1=2n,所以an+1an+2=2n+1,两式相除得=2.所以a1,a3,a5,…成等比数列,a2,a4,a6,…也成等比数列,而a1=1,a2=2.所以a10=2·24=32,a11=1·25=32.又因为an+an+1=bn,所以b10=a10+a11=64.4.D Ai=aiai+1,若{An}为等比数列,则==为常数,即=,=,….∴a1,a3,a5,…,a2n-1,…和a2,a4,…,a2n,…成等比数列,且公比相等.反之,若奇数项和偶数项分别成等比数列,且公比相等,设为q,则==q,从而{An}为等比数列.5.解析:由题意知,小王存款到期利息为12ar+11ar+10ar+…+2ar+ar=ar=78ar.答案:78ar6.解析:因为数列为“调和数列”,所以xn+1-xn=d(n∈N*,d为常数),即数列{xn}为等差数列,由x1+x2+…+x20=200得==200,即x3+x18=20,易知x3,x18都为正数时,x3x18取得最大值,所以x3x18≤2=100,即x3x18的最大值为100.答案:1007.解析:(1)因为a1a5+2a3a5+a2a8=25,所以a+2a3a5+a=25,又an>0,所以a3...