【教学重点】:重点:建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程。难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程。【教学设计】一、情景引入:活动1:(出示背景资料)约公元825年,中亚细亚数学家阿尔一花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.二、探求新知:活动2:1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍。前年这个学校购买了多少台计算机?引导学生回忆:设问1:如何列方程?分哪些步骤?师生讨论分析:①设未知数:前年购买计算机x台②找相等关系:前年购买量+去年购买量+今年购买量=140台③列方程:x+2x+4x=140设问2:怎样解这个方程?如何将这个方程转化为x=a的形式?学生观察、思考:根据分配律,可以把含x的项合并,即x+2x+4x=(1+2+4)x=7x老师板演解方程过程:(略)为帮助有困难的学生理解,可以在上述过程中标上箭头和框图。设问3:以上解方程“合并”起了什么作用?每一步的根据是什么?学生讨论、回答,师生共同整理:“合并”是一种恒等变形,它使方程变得简单,更接近x=a的形式。三、练习巩固:1、教师出示教材例1师生共同解决,教师板书过程。2、课堂练习:P/89练习四、课堂小结提问:1、你今天学习的解方程有哪些步骤,每一步依据是什么?2、今天讨论的问题中的相等关系有何共同特点?学生思考后回答、整理:①解方程的步骤及依据分别是:合并和系数化为1②总量=各部分量的和五、课堂作业:P/921,4,5六、设计意图:1、本节引子与上一节的“阅读与思考”相呼应,同时提出下面几节要讨论的内容,起到承上启下的作用,又有助于增加学习数学的兴趣,扩大知识面,感受数学的历史和文化的陶冶,提高数学紊养2、以学生身边的实际问题展开讨论,突出数学与现实的联系.3、以学生身边的实际问题展开讨论,突出数学与现实的联系.4、以问题的形出现,引导学生思考、交流,梳理所学知识。训练学生的口头表达能力,养成及时归纳总结的良好学习习惯。