图形认识初步一.几何图形有长方体、圆柱、直线、三角形、圆、球、圆锥、棱锥……等等.这是一个长方体的纸盒,它有两个面是正方形,其余各面是长方形.从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么?长方体、圆柱、圆锥、球、圆、线段、点、三角形、四边形等,都是从形形色色的物体外形中得出的.我们把这些图形称为几何图形.立体图形:长方体、正方体、球、圆柱、圆锥等它们的各部分不都在同一平面内,它们是立体图形.平面图形:线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形.立体图形与平面图形的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形.如长方体的侧面是长方形.1.从不同方向看立体图形对于一些立体图形,我们常常把它们转化为平面图形来研究.从正面看到的平面图形叫主视图,从左面看到的平面图形叫左视图,从上面看到的平面图形叫俯视图.2.立体图形的展开有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.圆柱圆锥三棱柱长方体思考:把立方体剪了几刀才展成平面图形的?剪了七刀,一条棱剪开成两条棱,展开图长方体长方形正方形线段点左视图主视图俯视图的周边一共有14条棱,所以剪了七刀.小结:由一些平面图形围成的几何体可以沿某些棱剪开展成平面图形;反之,由展开的平面图形也可以围成相应的几何体.3.点、线、面、体像长方体、正方体、圆柱体、圆锥体、球体、棱锥体等都是几何体,简称体;包围着体的是面,面有平面和曲面两种;面与面相交的地方形成线,线有直线和曲线两种;线与线相交的地方是点.从静态的一面看:体是由面围成的,面与面相交成线,线与线相交成点.从动态的一面看:点动成线,线动成面,面动成体.二.直线、射线、线段1、直线经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线.直线有两种表示方法:①用一个小写字母表示;②用两个大写字母表示.平面上一个点与一条直线的位置有什么关系?①点在直线上;②点在直线外.一个点在一条直线上,也可以说这条直线经过这个点,一个点在直线外,也可以说这条直线不经过这个点.当两条直线有一个共公点时,我们就称这两条直线相交,这个公共点叫做它们的交点.2、射线和线段直尺给我们线段的形象,手电筒发出的光给我们射线的形象,射线和线段都是直线的一部分.图①中的线段记作线段AB或线段a;图②中的射线记作射线OA或射线m.注意:用两个大写字母表示射线时,表示端点的字母一定要写在前面.直线、射线和线段有什么联系和区别联系:线段、射线都是直线的一部分,将线段向一端延长得到射线,向两端延长得到直线,将射线向另一方向延长得到直线,它们都有“直”的特征,它们都可以用一个小写字母或两个大写字母来表示.区别:直线没有端点,射线有一个端点,线段有两个端点;直线可以向两个方向延伸,射线可以向一个方向延伸,线段不能再延伸;表示直线和线段的两个大写字母可以交换位置,而表示射线的两个大写字母不能交换位置.例已知线段a、b,求作线段AB=a+b解:(1)作射线AM;BBBA直线AB··l直线l点在直线外·BBB·点在直线上AOba·al·BBBAOAm·②①ab(2)在AM上顺次截取AC=a,CB=b则AB=a+b为所求。尺规作图:用无刻度的直尺和圆规作图.3、比较两条线段的长短⑴.度量法:用刻度尺分别量出两条线段的长度从而进行比较.⑵.叠合法:把一条线段移到另一条线段上,使一端重合,从而进行比较.如:线段AB与线段CD比较,且A与C点重合,则有以下几种情况:①B与D重合,两条线段相等,记作:AB=CD.②B在线段CD内部,则线段CD大于线段AB,记作:CD>AB.③B在线段CD外部,则线段CD小于线段AB,记作:CD