指数函数(三)教学目标:使学生了解函数图象的变换;能运用指数函数的图象和性质解决一些简单问题,培养发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。教学重点:函数图象的变换;指数函数性质的运用教学难点:函数图象的变换;指数函数性质的运用[来源:学科网]教学过程:教学目标(一)教学知识点1.指数形式的复合函数.2.指数形式复合函数的单调性.3.指数形式复合函数的奇偶性.(二)能力训练要求1.掌握指数形式的复合函数的单调性的证明方法.2.掌握指数形式的复合函数的奇偶性的证明方法.3.培养学生的数学应用意识.(三)德育渗透目标1.认识从特殊到一般的研究方法.2.用联系的观点看问题.3.了解数学在生产实际中的应用.[来源:学科网ZXXK]●教学重点1.函数单调性的证明通法.2.函数奇偶性的证明通法.●教学难点指数函数的性质应用.●教学方法启发式启发学生运用证明函数单调性的基本步骤对指数形式的复合函数的单调性进行证明,但应在变形这一关键步骤帮助学生总结、归纳有关指数形式的函数变形技巧,以利于下一步的判断.在运用证明函数奇偶性的基本步骤对指数形式的复合函数的奇偶性证明时,应提醒学生考查函数的定义域是否关于原点对称,以培养学生的定义域意识,并引导学生得指数形式的复合函数判断奇偶性的常用等价形式,以帮助学生形成系统的知识结构.●教具准备[来源:Zxxk.Com]幻灯片三张第一张:判断及证明函数单调性的基本步骤、判断及证明函数奇偶性的基本步骤(记作§2.6.3A)第二张:例5证明过程(记作§2.6.3B)第三张:例6证明过程(记作§2.6.3C)●教学过程[来源:学科网]Ⅰ.复习回顾[师]上一节,我们一起学习了指数函数的性质应用,这一节,我们学习指数形式的复合函数的单调性、奇偶性的证明方法.首先,大家来回顾一下第二章第一单元所学的证明函数单调性、奇偶性的基本步骤.[生]判断及证明函数单调性的基本步骤:→→→假设作差变形判断.[生]判断及证明函数奇偶性的基本步骤:(1)考查函数定义域是否关于原点对称;(2)比较f(-x)与f(x)或者-f(x)的关系;(3)根据函数奇偶性定义得出结论.(给出幻灯片§2.6.3A,老师结合幻灯片内容加以强调说明)“”[师]在函数单调性的证明过程中,变形是一关键步骤,变形的目的是为了易于判断,判断有两层含义:一是对差式正负的判断;二是对增减函数定义的判断.另外,在函数奇偶性的判断及证明过程中,定义域的考查容易被大家忽略,而函数的定义域关于原点对称是函数具有奇偶性的必要条件,大家应予以重视.下面,我们通过例题来一起熟悉并掌握证明函数单调性,奇偶性的方法.Ⅱ.讲授新课[例5]当a>1时,证明函数f(x)=11xxaa是奇函数.分析:此题证明的结构仍是函数奇偶性的证明,但在证明过程中的恒等变形用到推广的实数范围内的指数幂运算性质.同时,应注意首先考查函数的定义域.证明:由ax-1≠0得x≠0故函数定义域{x|x≠0}关于原点对称.[来源:学§科§网Z§X§X§K]又f(-x)=xxxxxxaaaaaa)1()1(11=1111xxxxaaaa-f(x)=-11xxaa∴f(-x)=-f(x)所以函数f(x)=11xxaa是奇函数.[师]对于f(-x)与f(x)关系的判断,也可采用如下证法:xxxxxxxxaaaaaaaaxfxf1111)()(=-1即f(-x)=-f(x)评述:对于指数形式的复合函数的奇偶性的证明,常利用如下的变形等价形式:f(-x)=f(x))()(xfxf=1(f(x≠)0),f(-x)=-f(x))()(xfxf=-1(f(x≠)0).这种变形的等价形式主要是便于实数指数幂运算性质,要求学生在解决相关类型题时,予以尝试和体会.[例6]设a是实数,f(x)=a-122x(x∈R)(1)试证明对于任意a,f(x)为增函数;(2)试确定a值,使f(x)为奇函数.分析:此题的形式较为复杂,但应严格按照单调性、奇偶性的定义进行证明.还应要求学生注意不同题型的解答方法.(1)证明:设x1,x2∈R,且x1<x2则f(x1)-f(x2)=(a-)122()12221xxa=12212212xx=)12)(12()22(22121xxxx由于指数函数y=2x在R上是增函数,且x1<x2,所以2122xx即2122xx<0又由2x>0得12x+1>0,22x+1>0所以...