二次函数y=ax2+bx+c的图象和性质我们知道,像二次函数y=a(x-h)2+k的图象,顶点坐标为,通过平移抛物线y=ax2可以得到。二次函数y=3x2-6x+5也能化成这种形式吗?二次函数图象的开口方向,对称轴,顶点坐标.它是由y=-4x2怎样平移得到的?1)2(42xy(h,k)例1、怎样把函数y=3x2-6x+5的转化成y=a(x-h)2+k的形式?配方:5632xxy35232xx提取二次项系数3511232xx配方:加上再减去一次项系数绝对值一半的平方32132x整理:前三项化为平方形式,后两项合并同类项.2132x化简:去掉中括号老师提示:配方后的表达式通常称为顶点式函数y=3x2-6x+5的图象有何特征2.根据(顶点式)确定开口方向,对称轴,顶点坐标.∵a=3>0,∴开口向上;对称轴:直线x=1;顶点坐标:(1,2)..2132xy直接画函数y=ax²+bx+c的图象x…-2-101234………2132xy列表:根据对称性,选取适当值列表计算.…29145251429…如何画出函数y=3x2-6x+5的图象?描表、连线x=1●(1,2)5632xxy通过图象你能看出当x取何值时y随x的增大而减小,当x取何值时,y随x的增大而增大吗?当x<1时y随x的增大而减小;当x>1时,y随x的增大而增大.画出y=x2-6x+21的图象.21配方得:y=x2-6x+2121=(x-6)2+3由此可知,抛物线的顶点是点(6,3),对称轴是直线x=6.y=x2-6x+212121Oyx5105102015x=6·(6,3)·(8,5)·(4,5)·(0,21)·(12,21)y=(x-6)2+321y=x2-6x+2121怎样平移抛物线y=x2得到抛物线21y=(x-6)2+321怎样画二次函数y=ax2+bx+c(a≠0)的图象?当_____时y随x的增大而增大当_____时y随x的增大而减小x>6x<6例.求二次函数y=ax²+bx+c的对称轴和顶点坐标.函数y=ax²+bx+c的顶点式一般地,对于二次函数y=ax²+bx+c,我们可以利用配方法推导出它的对称轴和顶点坐标.例.求次函数y=ax²+bx+c的对称轴和顶点坐标.函数y=ax²+bx+c的顶点式配方:cbxaxy2ccxabxa2提取二次项系数acababxabxa22222配方:加上再减去一次项系数绝对值一半的平方222442abacabxa整理:前三项化为平方形式,后两项合并同类项.44222abacabxa化简:去掉中括号提示:这个结果通常称为求顶点坐标公式..44222abacabxay顶点坐标公式因此,二次函数y=ax²+bx+c的图象是一条抛物线.练习:写出下列抛物线的开口方向、对称轴及顶点坐标.2:abx它的对称轴是直线.44,22abacab它的顶点是.44222abacabxay;23.12xxy;2.22xxy;882.32xxy.3421.42xxy二次函数y=ax2+bx+c(a≠0)的图象和性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)由a,b和c的符号确定由a,b和c的符号确定向上向下在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.根据图形填表:abacab44,22abacab44,22abx2直线abx2直线abacabx44,22最小值为时当abacabx44,22最大值为时当21y2x12x13;22y5x80x319;对称轴是x=3,顶点坐标是(3,-5)对称轴是x=8,顶点坐标是(8,1)对称轴是x=0,顶点坐标是(0,12)根据公式确定下列二次函数图象的对称轴和顶点坐标: