二元一次不等式(组)表示的平面区域一.教材分析1.教学背景分析不等关系与相等关系都是客观事物的基本关系,不等式则是刻画现实世界中这些不等关系的数学模型,是进行数学研究、解决许多实际问题的数学工具,因而关于不等式的知识是高中数学学习的重要内容。本节课是不等式的第五大节的第一课时,通过探究二元一次不等式的解集的几何意义,了解不等式是刻画区域的重要工具,进而介绍二元一次不等式(组)所表示的平面区域。通过本节课的学习为后面寻求“最优解”的线型规划问题奠定基础。在本节课的学习过程中,使学生体会到数形结合的数学思想,发展学生应用数学的意识;同时让学生进行数学探究,体验知识的形成、应用过程,尝试运用特殊到一般,在由一般在回归到特殊的解决问题的思维方法。学生在之前的学习中已经学习了不等式的一些知识,并且知道了二元一次方程的解在平面直角坐标系中的图像是一条直线,通过类比的思维方式就可引入本节的教学。2.教学目标知识与技能目标:(1)理解“同侧同号”并掌握不等式区域的判断方法;(2)能作出二元一次不等式(组)表示的平面区域。过程与方法目标:(1)增强学生数形结合的思想;(2)理解数学的转化思想,提高分析问题、解决问题的能力。情感态度与价值观目标:(1)通过学生的主动参与、学生的合作交流,培养学生的探索方法与精神;(2)体会数学的应用价值;(3)体会由一般到特殊,由特殊到一般的思想。3.教学重、难点重点:二元一次不等式(组)表示的平面区域难点:寻求二元一次不等式(组)表示的平面区域二.教法、学法设计1.教法设计本节知识的形成过程是“猜想、验证、证明、形成、应用”,非常适合采用探究式的学习方法:通过类比让同学们猜想出结论;思考验证方案;利用联系、转化的方法探讨问题的逻辑证明;形用心爱心专心1成问题的解决方法;自己在知识应用的过程加深对于方法的理解。让学生经历知识的形成过程,使其不至于感觉到结论就像从魔术师帽子里飞出的鸽子那样令人惊讶,体验探索的乐趣。这不仅有利于知识的掌握,也有利于培养他们的创新能力。所以本节课的教学采用了探究式,启发引导,讲练结合的教学方法,注重学生数学思维方法以及研究问题方法的渗透,以多媒体作为教学辅助手段。从实际问题出发,逐步探讨了二元一次不等式(组)表示的平面区域。2.学法设计在学习中,让其以主体的态度,而不是被动的接受。经历知识的形成和发展过程,通过观察、归纳、思考、探索、交流、反思参与学习,认识和理解数学知识,学会学习,发展能力。三.教学过程设计教学过程教学内容教学活动设计说明新课引入问题:营养学家指出,成人的日常饮食应该摄入至少0.075kg碳水化合物,0.06kg蛋白质,0.06kg脂肪。已知1kg食物A含有0.15kg碳水化合物,0.06kg蛋白质,0.12kg脂肪;已知1kg食物B含有0.15kg碳水化合物,0.12kg蛋白质,0.06kg脂肪。设x,y分别为每天需要食物A,B的数量(单位:千克),请列出满足营养学家日常饮食要求的数学关系式。学生列出满足要求的数学关系式。教师结合学生列出的关系式给出二元一次不等式和二元一次不等式组的概念。从实际问题出发,引出二元一次不等式和二元一次不等式组的概念。体现应用价值,吸引学生的学习兴趣。探求二元一1.介绍开半平面和闭半平面的定义。2.引导1:二元一次方程在直角坐标系中的图像是一条直线,那么二元一次不等式在直角坐标平面上表示什么区域?引导2:直线将平面分成两部分,这与两个二元一次不等式教师给出相关的一些定义后,引导学生研究二元一次不等式在直角坐标平面上表示的平面区域。在给出相关定义后在研究其所表示的平面区域,顺理成章,符合学生的认知规律。采用类比推理的方法,进入本堂课的用心爱心专心2次不等式解集的几何意义)0(0CByAx有什么关联?引导3:如何验证我们的猜想?3.选择直线01yx,在平面上选择一点),(yxP,观察其在每一侧区域运动时,1yx的正负符号。4.证明:在直线0CByAx的同一侧任取一点),(11yxP的坐标使式子CByAx的值具有相同的符号。教师提出问题,引导学生思考,回答问题,进行合理的猜想:“同侧同号”。学生给...