1.1.1正弦定理项目内容课题1.1.1正弦定理(共1课时)修改与创新教学目标一、知识与技能1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.二、过程与方法1.让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系;2.引导学生通过观察、推导、比较,由特殊到一般归纳出正弦定理;3.进行定理基本应用的实践操作.三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.培养学生探索数学规律的思维能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.教学重、难点教学重点1.正弦定理的概念;2.正弦定理的证明及其基本应用.教学难点1.正弦定理的探索和证明;2.已知两边和其中一边的对角解三角形时判断解的个数.教学准备多媒体课件教学过程导入新课师如右图,固定△ABC的边CB及∠B,使边AC绕着顶点C转动.师思考:∠C的大小与它的对边AB的长度之间有怎样的数量关系?生显然,边AB的长度随着其对角∠C的大小的增大而增大.师能否用一个等式把这种关系精确地表示出来?1师在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系.如右图,在Rt△ABC中,设BC=A,AC=B,AB=C,根据锐角三角函数中正弦函数的定义,有ca=sinA,cb=sinB,又sinC=1=cc,则csimCcBbAasinsin.从而在直角三角形ABC中,simCcBbAasinsin.推进新课[合作探究]师那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)生可分为锐角三角形和钝角三角形两种情况:如右图,当△ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=AsinB=BsinA,则BbAasinsin,同理,可得BbCcsinsin.从而CcBbAasinsinsin.(当△ABC是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即CcBbAasinsinsin.师是否可以用其他方法证明这一等式?2生可以作△ABC的外接圆,在△ABC中,令BC=A,AC=B,AB=C,根据直径所对的圆周角是直角以及同弧所对的圆周角相等,来证明CcBbAasinsinsin这一关系.师很好!这位同学能充分利用我们以前学过的知识来解决此问题,我们一起来看下面的证法.在△ABC中,已知BC=A,AC=B,AB=C,作△ABC的外接圆,O为圆心,连结BO并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到∠BAB′=90°,∠C=∠B′,∴sinC=sinB′=RcBC2sinsin.∴RCc2sin.同理,可得RBbRAa2sin,2sin.∴RCcBbAa2sinsinsin.这就是说,对于任意的三角形,上述关系式均成立,因此,我们得到等式CcBbAasinsinsin.点评:上述证法采用了初中所学的平面几何知识,将任意三角形通过外接圆性质转化为直角三角形进而求证,此证法在巩固平面几何知识的同时,易于被学生理解和接受,并且消除了学生所持的“向量方法证明正弦定理是唯一途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量方法证明正弦定理作了铺垫.[知识拓展]师接下来,我们可以考虑用前面所学的向量知识来证明正弦定理.从定理内容可以看出,定理反映的是三角形的边角关系,而在向量知识中,哪一3知识点体现边角关系呢?生向量的数量积的定义式A·B=|A||B|Cosθ,其中θ为两向量的夹角.师回答得很好,但是向量数量积涉及的是余弦关系而非正弦关系,这两者之间能否转化呢?生可以通过三角函数的诱导公式sinθ=Cos(90°-θ)进行转化.师这一转化产生了新角90°-θ,这就为辅助向量j的添加提供了线索,为方便进一步的运算,辅助向量选取了单位向量j,而j垂直于三角形一边,且与一边夹角出现了90°-θ这一形式,这是作辅助向量j垂直于三角形一边的原因.师在向量方法证明过程中,构造向量是基础,并由向量的加法原则可得ABCBAC而添加垂直于AC的单位向量j是关键,为了产生j与AB、AC、CB的数量积,而在上面向量等式的两边同取与向量j的数量积运算,也就...