电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第6章 导数及其应用 6.3 利用导数解决实际问题教案 新人教B版选择性必修第三册-新人教B版高二选择性必修第三册数学教案VIP免费

高中数学 第6章 导数及其应用 6.3 利用导数解决实际问题教案 新人教B版选择性必修第三册-新人教B版高二选择性必修第三册数学教案_第1页
1/8
高中数学 第6章 导数及其应用 6.3 利用导数解决实际问题教案 新人教B版选择性必修第三册-新人教B版高二选择性必修第三册数学教案_第2页
2/8
高中数学 第6章 导数及其应用 6.3 利用导数解决实际问题教案 新人教B版选择性必修第三册-新人教B版高二选择性必修第三册数学教案_第3页
3/8
6.3利用导数解决实际问题学习目标核心素养1.了解导数在解决利润最大、效率最高、用料最省等实际问题中的作用.(重点)2.能利用导数求出某些实际问题的最大值(最小值).(难点、易混点)1.通过导数的实际应用的学习,培养数学建模素养.2.通过解决利润最大、效率最高、用料最省等实际问题,提升逻辑推理、数学运算素养.“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学.”著名数学家华罗庚曾如此精辟地论述了数学与生活的关系.导数作为数学工具是如何在生活中应用的呢?用导数解决最优化问题的基本思路1.思考辨析(正确的画“√”,错误的画“×”)(1)在经济活动中,怎样使经营成本最小的问题属于最优化问题.()(2)解决应用问题的关键是建立数学模型.()(3)生活中常见的收益最高,用料最省的问题就是数学中的最大、最小值问题.()[答案](1)√(2)√(3)√2.炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时时,原油温度(单位:℃)为f(x)=x3-x2+8(0≤x≤5),那么原油温度的瞬时变化率的最小值是()A.8B.C.-1D.-8C[原油温度的瞬时变化率为f′(x)=x2-2x=(x-1)2-1(0≤x≤5),所以当x=1时,原油温度的瞬时变化率取得最小值-1.]3.做一个容积为256m3的方底无盖水箱,所用材料最省时,它的高为()A.6mB.8mC.4mD.2mC[设底面边长为xm,高为hm,则有x2h=256,所以h=.所用材料的面积设为Sm2,则有S=4x·h+x2=4x·+x2=+x2.S′=2x-,令S′=0,得x=8,因此h==4(m).]4.某一件商品的成本为30元,在某段时间内,若以每件x元出售,可卖出(200-x)件,当每件商品的定价为______元时,利润最大.115[利润为S(x)=(x-30)(200-x)=-x2+230x-6000,S′(x)=-2x+230,由S′(x)=0,得x=115,这时利润达到最大.]面积、体积的最值问题【例1】请你设计一个包装盒,如图,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,点E,F在AB上,是被切去的一个等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)某广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.[思路点拨]弄清题意,根据“侧面积=4×底面边长×高”和“体积=底面边长的平方×高”这两个等量关系,用x将等量关系中的相关量表示出来,建立函数关系式,然后求最值.[解]设包装盒的高为hcm,底面边长为acm.由已知得a=x,h==(30-x),0<x<30.(1)S=4ah=8x(30-x)=-8(x-15)2+1800,所以当x=15时,S取得最大值.(2)V=a2h=2(-x3+30x2),V′=6x(20-x).令V′=0,得x=0(舍去)或x=20.当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0.所以当x=20时,V取得极大值,也是最大值.此时=,即包装盒的高与底面边长的比值为.1.解决面积、体积最值问题的思路要正确引入变量,将面积或体积表示为变量的函数,结合实际问题的定义域,利用导数求解函数的最值.2.解决优化问题时应注意的问题(1)列函数关系式时,注意实际问题中变量的取值范围,即函数的定义域;(2)一般地,通过函数的极值来求得函数的最值.如果函数f(x)在给定区间内只有一个极值点或函数f(x)在开区间上只有一个点使f′(x)=0,则只要根据实际意义判断该值是最大值还是最小值即可,不必再与端点处的函数值进行比较.[跟进训练]1.将一张2×6m的矩形钢板按如图所示划线,要求①至⑦全为矩形,且左右对称、上下对称,沿线裁去阴影部分,把剩余部分焊接成一个有盖的长方体水箱(其中①与③、②与④分别是全等的矩形,且⑤+⑥=⑦),设水箱的高为xm,容积为ym3.(1)写出y关于x的函数关系式;(2)x取何值时,水箱的容积最大.[解](1)由水箱的高为xm,得水箱底面的宽为(2-2x)m,长为=(3-x)m.故水箱的容积为y=2x3-8x2+6x(0

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第6章 导数及其应用 6.3 利用导数解决实际问题教案 新人教B版选择性必修第三册-新人教B版高二选择性必修第三册数学教案

您可能关注的文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群