2.1.2系统抽样学习目标核心素养1.理解系统抽样的概念.(重点)2.掌握系统抽样的方法与步骤,能用系统抽样从总体中抽取样本.(难点、易错点)1.通过系统抽样的学习,体现数学运算素养.2.借助系统抽样步骤的理解,养成数学建模素养.1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔逐个抽取即得到所需样本.2.系统抽样的步骤一般地,假设要从容量为N的总体中抽取容量为n的样本,我们可以按下列步骤进行系统抽样:思考:当总体中的个数较多时,为什么不宜用简单随机抽样.[提示]因为个体较多,采用简单随机抽样如制作号签等工作会耗费大量的人力、物力和时间,而且不容易做到“搅拌均匀”,从而使样本的代表性不强.1.系统抽样适用的总体应是()A.容量较小的总体B.容量较大的总体C.个体数较多但均衡的总体D.任何总体C[根据系统抽样的概念,只能是个体数较多且个体之间均衡的总体才能使用系统抽样.]2.在10000个有机会中奖的号码(编号为0000~9999)中,有关部门按照随机抽样的方式确定后两位数字是68的号码为中奖号码.这是运用哪种抽样方法来确定中奖号码的()A.抽签法B.系统抽样法C.随机数表法D.其他抽样方法B[由题意,中奖号码分别为0068,0168,0268,…,9968.显然这是将10000个中奖号码平均分成100组,从第一组抽0068号,其余号码是在此基础上加100的整数倍得到的,是系统抽样.]3.有20个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为()A.5,10,15,20B.2,6,10,14C.2,4,6,8D.5,8,11,14A[将20分成4组.每组5个号,间隔等距离为5.]4.为了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k=________.40[分段间隔k===40.]系统抽样的概念【例1】下列抽样中,最适宜用系统抽样的是()A.某市的4个区共有2000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200名入样B.从某厂生产的2000个电子元件中随机抽取5个入样C.从某厂生产的2000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样C[根据系统抽样的定义和特点判断,A项中的总体有明显的层次区别,不适宜用系统抽样;B项中样本容量很小,适合随机数表法;D项中总体容量较小,适合抽签法.]系统抽样的判断方法1首先看是否在抽样前知道总体是由什么组成,多少个个体.2再看是否将总体分成几个均衡的部分,并在每一个部分中进行简单随机抽样.3最后看是否等距抽样.[跟进训练]1.下列抽样方法不是系统抽样的是()A.从标有1~15号的15个球中,任选三个作样本,按从小号到大号的顺序,随机选起点i0,以后选i0+5,i0+10(超过15则从1再数起)号入选B.工厂生产的产品用传送带将产品送入包装车间前,在一天时间内检验人员从传送带上每隔五分钟抽一件产品进行检验C.做某项市场调查,规定在商场门口随机抽一个人进行询问调查,直到达到事先规定的调查人数为止D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈C[A编号间隔相同,B时间间隔相同.D相邻两排座位号的间隔相同,均满足系统抽样的特征.只有C项无明显的系统抽样的特征.]系统抽样中的计算问题【例2】采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7B.9C.10D.15思路点拨:求出第n组抽到的号码,然后解不等式即可.C[从960人中用系统抽样的方法抽取32人,则抽样间隔为k==30.因为第一组号码为9,则第二组号码为9+1×30=39,…,第n组号码为9+(n-1)×30=30n-21.由451≤30n-21≤750,即15≤n≤25,所以n=16,17,…,25,共有25-16+1=10(人).]系统抽样计算问题的解法及技巧1若已知总体数,且样本容量已知,则采用系统抽样方法进行抽样时,如果要剔除...