1.1任意角和弧度制教学目的:正确理解正角、负角、零角、象限角、终边相同的角的概念教学重点:将0°~360°范围的角推广到任意角,终边相同的角的集合。教学难点:用集合来表示终边相同的角。教学方法:启发式。教具:多媒体。教学过程:问题提出1.角是平面几何中的一个基本图形,角是可以度量其大小的.在平面几何中,角的取值范围如何?2.体操是力与美的结合,也充满了角的概念.2002年11月22日,在匈牙利德布勒森举行的第36届世界体操锦标赛中,“李小鹏跳”——“踺子后手翻转体180度接直体前空翻转体900度”,震惊四座,这里的转体180度、转体900度就是一个角的概念.3.过去我们学习了0°~360°范围的角,但在实际问题中还会遇到其他角.如在体操、花样滑冰、跳台跳水等比赛中,常常听到“转体10800”、“转体12600”这样的解说.再如钟表的指针、拧动螺丝的扳手、机器上的轮盘等,它们按照不同方向旋转所成的角,不全是0°~3600范围内的角.因此,仅有0°~360°范围内的角是不够的,我们必须将角的概念进行推广.知识探究(一):角的概念的推广思考1:如图,一条射线的端点是O,它从起始位置OA旋转到终止位置OB,形成了一个角α,其中点O,射线OA、OB分别叫什么名称?思考2:在齿轮传动中,被动轮与主动轮是按相反方向旋转的.一般地,一条射线绕其端点旋转,既可以按逆时针方向旋转,也可以按顺时针方向旋转.你认为将一条射线绕其端点按逆时针方向旋转600所形成的角,与按顺时针方向旋转600所形成的角是否相等?思考3:为了区分形成角的两种不同的旋转方向,可以作怎样的规定?如果一条射线没有作任何旋转,它还形成一个角吗?规定:画图表示一个大小一定的角,先画一条射线作为角的始边,再由角的正负确定角的旋转方向,再由角的绝对值大小确定角的旋转量,画出角的终边,并用带箭头的螺旋线加以标注.思考5:如果你的手表慢了20分钟,或快了1.25小时,你应该将分钟分别旋转多少度才能将时间校准?思考6:任意两个角的数量大小可以相加、相减,如50°+80°=130°,50°-80°=-30°,你能解释一下这两个式子的几何意义吗?思考7:一个角的始边与终边可以重合吗?如果可以,这样的角的大小有什么特点?知识探究(二):象限角思考1:为了进一步研究角的需要,我们常在直角坐标系内讨论角,并使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么对一个任意角,角的终边可能落在哪些位置?用心爱心专心1思考2:如果角的终边在第几象限,我们就说这个角是第几象限的角;如果角的终边在坐标轴上,就认为这个角不属于如何象限,或称这个角为轴线角.那么下列各角:-50°,405°,210°,-200°,-450°分别是第几象限的角?思考3:锐角与第一象限的角是什么逻辑关系?钝角与第二象限的角是什么逻辑关系?直角与轴线角是什么逻辑关系?思考4:第二象限的角一定比第一象限的角大吗?思考5:在直角坐标系中,135°角的终边在什么位置?终边在该位置的角一定是135°吗?知识探究(三):终边相同的角思考1:-32°,328°,-392°是第几象限的角?这些角有什么内在联系?思考2:与-32°角终边相同的角有多少个?这些角与-32°角在数量上相差多少?思考3:所有与-32°角终边相同的角,连同-32°角在内,可构成一个集合S,你能用描述法表示集合S吗?.思考4:一般地,所有与角α终边相同的角,连同角α在内所构成的集合S可以怎样表示?思考5:终边在x轴正半轴、负半轴,y轴正半轴、负半轴上的角分别如何表示?思考6:终边在x轴、y轴上的角的集合分别如何表示?用心爱心专心2思考7:第一、二、三、四象限的角的集合分别如何表示?第一象限:第二象限:第三象限:;第四象限:思考8:如果α是第二象限的角,那么2α、α/2分别是第几象限的角?理论迁移例1在0°~360°范围内,找出与-950°12′角终边相同的角,并判定它是第几象限角.129°48′,第二象限角.小结作业1.角的概念推广后,角的大小可以任意取值.把角放在直角坐标系中进行研究,对于一个给定的角,都有唯一的一条终边与之对应,并使得角具有代数和几何双重意义.2.终边相同的角有无数个,在0°~360°范围内与已知角...