圆幂定理定义圆幂=PO^2-R^2(该结论为欧拉公式)所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD。统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)相交弦说明几何语言:若弦AB、CD交于点P则PA·PB=PC·PD(相交弦定理)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的例中项几何语言:若AB是直径,CD垂直AB于点P,则PC^2=PA·PB(相交弦定理推论)切割线定理定义从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。是圆幂定理的一种。几何语言: PT切⊙O于点T,PBA是⊙O的割线∴PT的平方=PA·PB(切割线定理)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言: PT是⊙O切线,PBA,PDC是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)(割线定理)由上可知:PT∧2(平方)=PA·PB=PC·PD证明切割线定理证明:设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT^2=PA·PB证明:连接AT,BT ∠PTB=∠PAT(弦切角定理)∠P=∠P(公共角)∴△PBT∽△PTA(两角对应相等,两三角形相似)则PB:PT=PT:AP即:PT^2=PB·PA割线定理定义从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。从圆外一点L引两条割线与圆分别交于A.B.C.D则有LA·LB=LC·LD。如下图所示。(LT是切线)证明如图直线ABP和CDP是自点P引的⊙O的两条割线,则PA·PB=PC·PD证明:连接AD、BC ∠A和∠C都对弧BD∴由圆周角定理,得∠A=∠C又 ∠APD=∠CPB∴△ADP∽△CBP∴AP:CP=DP:BP,也就是AP·BP=CP·DP切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线几何语言: l⊥OA,点A在⊙O上∴直线l是⊙O的切线(切线判定定理)切线的性质定理圆的切线垂直于经过切点半径几何语言: OA是⊙O的半径,直线l切⊙O于点A∴l⊥OA(切线性质定理)推论1经过圆心且垂直于切线的直径必经过切点推论2经过切点且垂直于切线的直线必经过圆心切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角几何语言: 直线PA、PB分别切⊙O于A、B两点∴PA=PB,∠APO=∠BPO(切线长定理)证明:连结OA、OB 直线PA、PB分别切⊙O于A、B两点∴OA⊥AP、OB⊥PB∴∠OAP=∠OBP=90°在△OPA和△OPB中:∠OAP=∠OBPOP=OPOA=OB=r∴△OPA≌△OPB(HL)∴PA=PB,∠APO=∠BPO弦切角定理弦切角(即图中∠ACD)等于它所夹的弧(弧AC)对的圆周角等于所夹的弧的读数的一半等于1/2所夹的弧的圆心角[注,由于网上找得的图不是很完整,图中没有连结OC]几何语言: ∠ACD所夹的是弧AC∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数(弦切角定理)推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等几何语言: ∠1所夹的是弧MN,∠2所夹的是PQ,弧MN=弧PQ∴∠1=∠2证明:作AD⊥EC ∠ADC=90°∴∠ACD+∠CAD=90° ED与⊙O切于点C∴OC⊥ED∴∠OCD=∠OCA+∠ACD=90°∴∠OCA=∠CAD OC=OA=r∴∠OCA=∠OAC∴∠COA=180°-∠OCA-∠OAC=180°-2∠CAD又 ∠ACD=90°-∠CAD∴∠ACDC=1/2∠COA∴∠ACD=∠ABC=1/2∠COA=1/2弧AC的度数弦切角概念顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.它是继圆心角、圆周角之后第三种与圆有关的角.这种角必须满足三个条件:(1)顶点在圆上,即角的顶点是圆的一条切线的切点;(2)角的一边和圆相交,即角的一边是过切点的一条弦所在的射线;(3)角的另一边和圆相切,即角的另一边是切线上以切点为端点的一条射线.它们是判断一个角是否为弦切角的标准,三者缺一不可。(4)弦切角可以认为是圆周...