课题2.7最大面积是多少课型新授课教学目标掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.教学重点本节的重点是应用二次函数解决图形有关的最值问题,这是本书惟一的一种类型,也是二次函数综合题目中常见的一种类型.在二次函数的应用中占有重要的地位,是经常考查的题型,根据图形中的线段之间的关系,与二次函数结合,可解决此类问题.教学难点由图中找到二次函数表达式是本节的难点,它常用的有三角形相似,对应线段成比例,面积公式等,应用这些等式往往可以找到二次函数的表达式.教学方法探索研究法.教学内容及过程一、创设问题情境,引入新课上节课我们利用二次函数解决了最大利润问题,知道了求最大利润就是求函数的最大值,实际上就是用二次函数来解决实际问题.解决这类问题的关键是要读懂题目,明确要解决的是什么,分析问题中各个量之间的关系,把问题表示为数学的形式,在此基础上,利用我们所学过的数学知识,就可以一步步地得到问题的解.本节课我们将继续利用二次函数解决最大面积问题.二、新课讲解1、例题讲解如下图,在一个直角三角形的内部作一个长方形ABCD.其中AB和AD分别在两直角边上.(1)设长方形的一边AB=xm,那么AD边的长度如何表示?(2)设长方形的面积为ym2.当x取何值时,y的值最大?最大值是多少?分析:(1)要求AD边的长度,即求BC边的长度,而BC是△EBC中的一边,因此可以用三角形相似求出BC.由△EBC∽△EAF,得所以AD=BC=(40-x).备注(2)要求面积夕的最大值.即求函数y=AB·AD=x·(40-x)的最大值,就转化为数学问题了.下面请大家讨论写出步骤.(1) BC//AD,∴△EBC∽△EAF.∴.又AB=x,BE=40-x,∴.∴BC=(40-x).∴AD=BC=(40-x)=30-x.(2)y=AB·AD=x(30-x)=-x2+30x=-(x2-40x+400-400)=-(x2-40x+400)+300=-(x-20)2+300当x=20时,y最大=300.即当x取20m时,y的值最大,最大值是300m2.刚才我们先进行了分析.要求面积就需要求矩形的两条边,把这两条边分别用含x的代数式表示出来,代入面积公式就能转化为数学问题了,大家觉得用数学知识解决实际问题很难吗?[生]不很难.下面我们换一个条件.看看大家能否解决.设AD边的长为xm,则问题会怎样呢?与同伴交流.要求面积需求AB的边长,而AB=DC,所以需要求DC的长度,而DC是△FDC中的一边,所以可以利用三角形相似来求.解: DC//AB,∴△FDC∽△FAE.. AD=x,FD=30-x.∴.∴DC=(30-x).∴AB=DC=(30-x).y=AB·AD=x·(30-x)=-x2+40x=-(x2-30x+225-225)=-(x-15)2+300.当x=15时,y最大=300.即当AD的长为15m时,长方形的面积最大,最大面积是300m22、做一做某建筑物的窗户如下图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m,当x等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?通过刚才的练习,这个问题自己来解决好吗?分析:x为半圆的半径,也是矩形的较长边,因此x与半圆面积和矩形面积都有关系.要求透过窗户的光线最多,也就是求矩形和半圆的面积之和最大,即2xy+x2最大,而由于4y+4x+3x+πx=7x+4y+πx=15,所以y=.面积S=πx2+2xy=πx2+2x·=πx2+=-3.5x2+7.5x,这时已经转化为数学问题即二次函数了,只要化为顶点式或代入顶点坐标公式中即可.解: 7x+4y-πx=15,∴y=.设窗户的面积是S(m2),则S=πx2+2xy=πx2+2x·=πx2+=-3.5x2+7.5x=-3.5(x2-x)=-3.5(x-).∴当x=≈1.07时,S最大=≈4.02.即当x≈1.07m时,S最大≈4.02m2,此时.窗户通过的光线最多.3、议一议我们已经做了不少用二次函数知识解决实际问题的例子,现在大家能否根据前面的例子作一下总结,解决此类问题的基本思路是什么呢?与同伴进行交流.首先是理解题目,然后是分析已知量与未知量,转化为数学问题.看来大家确实学会了用数学知识解决实际问题,基本思想如下:解决此类问题的基本思路是:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)做函数求解;(5)检验结果的合...