1.转化与化归思想方法:就是在研究和解决有关数学问题时,采用某种手段或方法将问题通过变换使之转化,进而达到使问题解决的一种方法,在解决数学问题时,常遇到一些问题直接求解较为困难,需将原问题转化为一(相对来说,对自己较为熟悉)通过对新问题的求解,达到解决问题的目的.2014年高考数学转化与化归思想问题规范问题原问题的解答解答问题转化已知理论、方法、技巧问题还原2.解题的过程就是“转化”的过程,“转化”是解数学题的重要思想方法之一.3.转化具有多样性、层次性和重复性的特点,为了实施有效的转化,既可以变更问题的条件,也可以变更问题的结论;既可以变换问题的内部结构,又可以变换问题的外部形式,这就是多样性.转化原则既可以应用于沟通数学与各分支学科的联系,从宏观上实现学科间的转化,又能调动各种方法与技术,从微观上解决多种具体问题,这是转化的层次.而解决问题时可以多次的使用转化,使问题逐次达到规范化,这是转化原则应用的重复性.§4转化与化归思想方法解读1.转化与化归思想所谓转化与化归思想,就是将待解决的问题和未解决的问题,采取某种策略,转化归结为一个已经能解决的问题;或者归结为一个熟知的具有确定解决方法和程序的问题;归结为一个比较容易解决的问题,最终求得原问题的解.2.转化与化归思想的原则(1)熟悉已知化原则:将陌生的问题转化为熟悉的问题,将未知的问题转化为已知问题,以便于我们运用熟知的知识、经验和问题来解决.(2)简单化原则:将复杂问题转化为简单问题,如三维空间问题转化为二维平面问题,通过简单问题的解决思路和方法,获得对复杂问题的解答启示和思路以达到解决复杂问题的目的.(3)具体原则:化归方向应由抽象到具体.(4)和谐统一性原则:转化问题的条件或结论,使其表现形式更符合数与形内部所表示的和谐统一的形式;或者转化命题,使其推演有利于运用某种数学方法或符合人们的思维规律.(5)正难则反的原则:当问题正面讨论遇到困难时,应想到问题的反面;或问题的正面较复杂时,其反面一般是简单的;设法从问题的反面去探求,使问题获得解决.3.转化与化归思想常用到的方法(1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(5)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径.(6)类比法:运用类比推理,猜测问题的结论,易于确定转化途径.(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题.(8)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化的目的.(9)加强命题法:在证明不等式时,原命题难以得证,往往把命题的结论加强,即命题的结论加强为原命题的充分条件,反而能将原命题转化为一个较易证明的命题,比如在证明不等式时,原命题往往难以得证,这时常把结论加强,使之成为原命题充分条件,从而易证.(10)补集法:如果正面解决问题有困难,可把原问题结果看作集合A,而包含问题的整体问题的结果类比为全集U,通过解决全集U及补集∁UA使原问题得以解决.题型一等与不等的转化与化归【例1】若a、b是正数,且满足ab=a+b+3,求ab的取值范围.解方法一(看成函数的值域) ab=a+b+3,∴即a>1或a<-3,又a>0,∴a>1,故a-1>0.当且仅当,即a=3时取等号.,013,0,13aabaab而9514)1(14)1(5)1(132aaaaaaaaab141aa又a>3时,是关于a的单调增函数.∴ab的取值范围是[9,+∞).方法二(看成不等式的解集) a,b为正数,∴ab≥9.【探究拓展】将一个等式转化成不等式,是求变量取值范围的重要方法,通常利用函数的单调性解答此类问题,或者利用基本不等式解答这类问题.,)(13,032)(.32,3,22舍去或解得即又ababababababbaababba514)1(aa变式训...