运筹学学习心得运筹学是一门具有多科学交叉特点的边缘科学,至今没有一个统一的定义。综合种种定义,本书从直观、明了的角度将运筹学定义为:“通过构建、求解数学模型,规划、优化有限资源的合理利用,为科学决策提供量化一句的系统知识体系。”当我们遇到一个问题,需要认真考察该问题。如果它适合线性规划的条件,那么我们就可以利用线性规划的理论解决该问题。但是很多时候我们遇到的问题用线性规划解决耗时、准确度低或者根本无法用线性规划解决。那么我们就要寻找别的理论方法来解决问题。通过对运筹学的学习我掌握了运筹学的基本概念、基本方法和解题技巧,对于一些简单的问题可以根据实际问题建立运筹学模型及求解模型。运筹学对我们以后的生活也有不小的影响,将运筹学运用到实际问题上去,学以致用。运筹学在解决大量实际问题过程中形成的工作步骤(1)提出和形成问题。即弄清问题的目标,可能的约束,问题的可控变量以及有关参数,搜集有关资料。(2)建立模型。即把问题中可控变量、参数和目标与约束之间的关系用一定的模型表示出来;(3)求解。用各种手段将模型求解。解可以是最优解、次优解、满意解。复杂模型的求解需用计算机,解的精度要求可由决策者提出;(4)解的检验。首先检查求解步骤和程序有无错误,然后检查解是否反映现实问题;(5)解的控制。通过控制解的变化过程决定对解是否要作一定的变化;(6)解的实施。是指将解用到实际中必须考虑到实施的问题,如向实际部门讲清解的用法,在实施中可能产生的问题和修改。运筹学的应用,主要关于本专业将来可能运用到的方面:(1)市场销售。主要应用在广告预算和媒介的选择、竞争第1页共4页性定价、新产品开发、销售计划的制定等方面。如美国杜邦公司在20世纪50年代起就非常重视将运筹学用于研究如何做好广告工作,产品定价和新产品的引入。通用店里公司对某些市场进行模拟研究。(2)生产计划。在总体计划方面主要用于总体确定生产、存储和劳动力的配合等计划,以适应波动的需求计划,用线性规划和模拟方法等。(3)库存管理。主要应用于多种屋子库存量的管理,确定某些设备的能力或容量。(4)运输问题。这涉及空运、水云、公路运输、铁路运输、管道运输、厂内运输。主要是用于调度和时刻表安排计划还有路线选择。然后是我对所学知识的了解和分析:线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。其数学模型有目标函数和约束条件组成。一个问题要满足一下条件时才能归结为线性规划的模型:1.要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;2.为达到这个目标存在很多种方案;3.要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。简单的设计2个变量的线性规划问题可以直接运用图解法得到。但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。将所得的量的值代入目标函数,得出最优值。遇到评价同类型的组织的工作绩效相对有效性的问题时,可以用数据包络进行分析,运用数据包络分析的的决策单元要有相同的投入和相第2页共4页投的产出。对偶理论:其基本思想是每一个线性规划问题都涉及一个与其对偶的问题,在求一个解的时候,也同时给出另一问题的解。对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标标准形式的对偶问题。因为对偶问题存在特殊的基本性质,所以我们在解决实际问题比较困难时可以将其转化成其对偶问题进行求解。灵敏度分析。分析在线性规划问题中,一个或几个参数的变化对最优解的影响问题。可以分析目标函数中变量系数、约束条件的右端项、增加一个约束变量、增加一个约束条件、约束...