电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)——证明平行与垂直教案 理(含解析)新人教A版-新人教A版高三全册数学教案VIP免费

高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)——证明平行与垂直教案 理(含解析)新人教A版-新人教A版高三全册数学教案_第1页
1/17
高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)——证明平行与垂直教案 理(含解析)新人教A版-新人教A版高三全册数学教案_第2页
2/17
高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)——证明平行与垂直教案 理(含解析)新人教A版-新人教A版高三全册数学教案_第3页
3/17
§8.7立体几何中的向量方法(一)——证明平行与垂直最新考纲考情考向分析1.理解直线的方向向量及平面的法向量.2.能用向量语言表述线线、线面、面面的平行和垂直关系.3.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.利用空间向量证明空间中的位置关系是近几年高考重点考查的内容,涉及直线的方向向量,平面的法向量及空间直线、平面之间位置关系的向量表示等内容.以解答题为主,主要考查空间直角坐标系的建立及空间向量坐标的运算能力及应用能力,有时也以探索论证题的形式出现.1.用向量表示直线或点在直线上的位置(1)给定一个定点A和一个向量a,再任给一个实数t,以A为起点作向量AP=ta,则此向量方程叫做直线l以t为参数的参数方程.向量a称为该直线的方向向量.(2)对空间任一确定的点O,点P在直线l上的充要条件是存在唯一的实数t,满足等式OP=(1-t)OA+tOB,叫做空间直线的向量参数方程.2.用向量证明空间中的平行关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.(2)设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,则l∥α或l⊂α⇔存在两个实数x,y,使v=xv1+yv2.(3)设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.(4)设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.3.用向量证明空间中的垂直关系(1)设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.(3)设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.概念方法微思考1.直线的方向向量如何确定?提示l是空间一直线,A,B是l上任意两点,则AB及与AB平行的非零向量均为直线l的方向向量.2.如何确定平面的法向量?1提示设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.(×)(2)平面的单位法向量是唯一确定的.(×)(3)若两平面的法向量平行,则两平面平行.(√)(4)若两直线的方向向量不平行,则两直线不平行.(√)(5)若a∥b,则a所在直线与b所在直线平行.(×)(6)若空间向量a平行于平面α,则a所在直线与平面α平行.(×)题组二教材改编2.设u,v分别是平面α,β的法向量,u=(-2,2,5),当v=(3,-2,2)时,α与β的位置关系为__________;当v=(4,-4,-10)时,α与β的位置关系为________.答案α⊥βα∥β解析当v=(3,-2,2)时,u·v=(-2,2,5)·(3,-2,2)=0⇒α⊥β.当v=(4,-4,-10)时,v=-2u⇒α∥β.3.如图所示,在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.答案垂直解析以A为原点,分别以AB,AD,AA1所在直线为x,y,z轴建立空间直角坐标系,如图所示.设正方体的棱长为1,则A(0,0,0),M,O,N,AM·ON=·=0,∴ON与AM垂直.2题组三易错自纠4.直线l的方向向量a=(1,-3,5),平面α的法向量n=(-1,3,-5),则有()A.l∥αB.l⊥αC.l与α斜交D.l⊂α或l∥α答案B解析由a=-n知,n∥a,则有l⊥α,故选B.5.已知平面α,β的法向量分别为n1=(2,3,5),n2=(-3,1,-4),则()A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不对答案C解析 n1≠λn2,且n1·n2=2×(-3)+3×1+5×(-4)=-23≠0,∴α,β既不平行,也不垂直.6.已知A(1,0,0),B(0,1,0),C(0,0,1),则下列向量是平面ABC法向量的是()A.(-1,1,1)B.(1,-1,1)C.D.答案C解析设n=(x,y,z)为平面ABC的法向量,AB=(-1,1,0),AC=(-1,0,1),则化简得∴x=y=z.故选C.题型一利用空间向量证明平行问题例1如图所示,平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD的中点.求证:PB∥平面EFG.证明 平面PAD⊥平面ABCD,ABCD为正方形,△PAD是直角三角形,且PA=AD,∴AB,AP,AD两两垂直,以A为坐标原点,AB,AD,AP所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(2,2,0),D(0,2...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学大一轮复习 第八章 立体几何与空间向量 8.7 立体几何中的向量方法(一)——证明平行与垂直教案 理(含解析)新人教A版-新人教A版高三全册数学教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部