§6.3等比数列及其前n项和最新考纲1.通过实例,理解等比数列的概念.2.探索并掌握等比数列的通项公式与前n项和的公式.3.能在具体的问题情境中,发现数列的等比关系,并能用有关知识解决相应的问题.4.体会等比数列与指数函数的关系.1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为=q(n∈N*,q为非零常数).(2)等比中项:如果a,G,b成等比数列,那么G叫做a与b的等比中项.即G是a与b的等比中项⇒a,G,b成等比数列⇒G2=ab.2.等比数列的有关公式(1)通项公式:an=a1qn-1.(2)前n项和公式:Sn=.3.等比数列的常用性质(1)通项公式的推广:an=am·qn-m(n,m∈N*).(2)若m+n=p+q=2k(m,n,p,q,k∈N*),则am·an=ap·aq=a.(3)若数列{an},{bn}(项数相同)是等比数列,则{λan},,{a},{an·bn},(λ≠0)仍然是等比数列.(4)在等比数列{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,…为等比数列,公比为qk.概念方法微思考1.将一个等比数列的各项取倒数,所得的数列还是一个等比数列吗?若是,这两个等比数列的公比有何关系?提示仍然是一个等比数列,这两个数列的公比互为倒数.2.任意两个实数都有等比中项吗?提示不是.只有同号的两个非零实数才有等比中项.3.“b2=ac”是“a,b,c”成等比数列的什么条件?提示必要不充分条件.因为b2=ac时不一定有a,b,c成等比数列,比如a=0,b=0,c1=1.但a,b,c成等比数列一定有b2=ac.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足an+1=qan(n∈N*,q为常数)的数列{an}为等比数列.(×)(2)如果数列{an}为等比数列,bn=a2n-1+a2n,则数列{bn}也是等比数列.(×)(3)如果数列{an}为等比数列,则数列{lnan}是等差数列.(×)(4)数列{an}的通项公式是an=an,则其前n项和为Sn=.(×)(5)数列{an}为等比数列,则S4,S8-S4,S12-S8成等比数列.(×)题组二教材改编2.已知{an}是等比数列,a2=2,a5=,则公比q=.答案解析由题意知q3==,∴q=.3.公比不为1的等比数列{an}满足a5a6+a4a7=18,若a1am=9,则m的值为()A.8B.9C.10D.11答案C解析由题意得,2a5a6=18,a5a6=9,∴a1am=a5a6=9,∴m=10.题组三易错自纠4.若1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则的值为.答案-解析 1,a1,a2,4成等差数列,∴3(a2-a1)=4-1,∴a2-a1=1.又 1,b1,b2,b3,4成等比数列,设其公比为q,则b=1×4=4,且b2=1×q2>0,∴b2=2,∴==-.5.设Sn为等比数列{an}的前n项和,8a2+a5=0,则=.答案-11解析设等比数列{an}的公比为q, 8a2+a5=0,∴8a1q+a1q4=0.∴q3+8=0,∴q=-2,∴=·===-11.6.一种专门占据内存的计算机病毒开机时占据内存1MB,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机秒,该病毒占据内存8GB.(1GB=210MB)答案39解析由题意可知,病毒每复制一次所占内存的大小构成一等比数列{an},且a1=2,q=2,∴an=2n,2则2n=8×210=213,∴n=13.即病毒共复制了13次.∴所需时间为13×3=39(秒).题型一等比数列基本量的运算1.(2018·济南模拟)已知正项等比数列{an}满足a3=1,a5与a4的等差中项为,则a1的值为()A.4B.2C.D.答案A解析设公比为q. a3=1,a5与a4的等差中项为,∴⇒即a1的值为4,故选A.2.(2018·全国Ⅲ)等比数列{an}中,a1=1,a5=4a3.(1)求{an}的通项公式;(2)记Sn为{an}的前n项和,若Sm=63,求m.解(1)设{an}的公比为q,由题设得an=qn-1.由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.故an=(-2)n-1或an=2n-1(n∈N*).(2)若an=(-2)n-1,则Sn=.由Sm=63得(-2)m=-188,此方程没有正整数解.若an=2n-1,则Sn=2n-1.由Sm=63得2m=64,解得m=6.综上,m=6.思维升华(1)等比数列的通项公式与前n项和公式共涉及五个量a1,an,q,n,Sn,已知其中三个就能求另外两个(简称“知三求二”).(2)运用等比数列的前n项和...