电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

10.9 离散型随机变量的期望与方差 Microsoft Word 文档VIP免费

10.9 离散型随机变量的期望与方差 Microsoft Word 文档_第1页
1/11
10.9 离散型随机变量的期望与方差 Microsoft Word 文档_第2页
2/11
10.9 离散型随机变量的期望与方差 Microsoft Word 文档_第3页
3/11
10.9离散型随机变量的期望与方差一、明确复习目标了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差.二.建构知识网络1.平均数及计算方法(1)对于n个数据x1,x2,…,xn,=(x1+x2+…+xn)叫做这n个数据的平均数,(2)当数据x1,x2,…,xn的数值较大时,可将各数据同时减去一个适当的常数a,得到x1′=x1-a,x2′=x2-a,…,xn′=xn-a,那么,=+a.(3)如果在n个数据中,x1出现f1次,x2出现f2次,…,xk出现fk次(f1+f2+…+fk=n),那么=,叫加权平均数.2.方差及计算方法(1)对于一组数据x1,x2,…,xn,s2=[(x1-)2+(x2-)2+…+(xn-)2]叫做这组数据的方差,而s叫做标准差.(2)方差公式:s2=[(x12+x22+…+xn2)-n2](3)当数据x1,x2,…,xn中各值较大时,可将各数据减去一个适当的常数a,得到x1′=x1-a,x2′=x2-a,…,xn′=xn-a则s2=[(x1′2+x2′2+…+xn′2)-n]3.随机变量的数学期望:一般地,若离散型随机变量ξ的概率分布为ξx1x2…xn…Pp1p2…pn…则称Eξ=x1p1+x2p2+……+xnpn…为ξ的数学期望,简称期望.也叫平均数,均值.(1)数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平.(2)期望的一个性质:E(aξ+b)=aEξ+b(3)求期望的方法步骤:①确定随机变量的所有取值;②计算第个取值的概率并列表;③由期望公式计算期望值。4.方差:Dξ=(x1-Eξ)2p1+(x2-Eξ)2p2+…+(xn-Eξ)2pn+…(1)标准差:Dξ的算术平方根叫做随机变量ξ的标准差,记作(2)方差的性质:D(aξ+b)=a2Dξ;Dξ=E(ξ2)-(Eξ)2(3)方差的求法步骤:①求分布列;②求期望;③由公式计算方差。随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。5.会用求和符号Σ:如Eξ=xipi,Dξ=(xi-Eξ)2pi,6.二项分布的期望和方差:若ξ~B(n,p),则Eξ=np,np(1-p)7.几何分布的期望和方差:若ξ服从几何分布g(k,p)=,则,证明:令,三、双基题目练练手1.(2005江苏)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4,9.9,9.6,9.4,9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.0162.设导弹发射的事故率为0.01,若发射10次,其出事故的次数为ξ,则下列结论正确的是()A.Eξ=0.001B.Dξ=0.099C.P(ξ=k)=0.01k·0.9910-kD.P(ξ=k)=C·0.99k·0.0110-k3.一射手对靶射击,直到第一次命中为止每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为A.2.44B.3.376C.2.376D.2.44.(2006福建)一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上的数之积的数学期望是___。5.(2006四川)设离散型随机变量ξ可能取的值为1,2,3,4.P(ξ=k)=ak+b(k=1,2,3,4),又ξ的数学期望Eξ=3,则a+b=__________6.有两台自动包装机甲与乙,包装重量分别为随机变量ξ1、ξ2,已知Eξ1=Eξ2,Dξ1>Dξ2,则自动包装机________的质量较好.7.若随机变量A在一次试验中发生的概率为p(0

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

10.9 离散型随机变量的期望与方差 Microsoft Word 文档

您可能关注的文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群