微型专题10带电粒子在组合场、叠加场中的运动[学科素养与目标要求]物理观念:1.知道组合场是电场与磁场各位于一定的区域内,并不重叠.2.叠加场是指某区域同时存在电场、磁场和重力场中的两个或者三个,也叫复合场.科学思维:1.知道组合场问题一般可以按时间的先后顺序分成若干个小过程,在每一个小过程中对粒子进行分析.2.叠加场问题要弄清叠加场的组成,结合运动情况和受力情况分析粒子的运动.一、带电粒子在组合场中的运动带电粒子在电场、磁场组合场中的运动是指粒子从电场到磁场或从磁场到电场的运动.通常按时间的先后顺序分成若干个小过程,在每一运动过程中从粒子的受力性质、受力方向和速度方向的关系入手,分析粒子在电场中做什么运动,在磁场中做什么运动.(1)在匀强电场中运动:①若初速度v0与电场线平行,粒子做匀变速直线运动;②若初速度v0与电场线垂直,粒子做类平抛运动.(2)在匀强磁场中运动:①若初速度v0与磁感线平行,粒子做匀速直线运动;②若初速度v0与磁感线垂直,粒子做匀速圆周运动.(3)解决带电粒子在组合场中的运动问题,所需知识如下:例1(2018·安徽师大附中期末)如图1所示,在平面直角坐标系xOy内,第Ⅱ、Ⅲ象限内存在沿y轴正方向的匀强电场,第Ⅰ、Ⅳ象限内存在半径为L的圆形匀强磁场,磁场圆心在M(L,0)点,磁场方向垂直于坐标平面向外.一带正电粒子从第Ⅲ象限中的Q(-2L,-L)点以速度v0沿x轴正方向射入,恰好从坐标原点O进入磁场,从P(2L,0)点射出磁场,不计粒子重力,求:图1(1)电场强度与磁感应强度大小的比值;(2)粒子在磁场与电场中运动时间的比值.答案(1)(2)解析(1)设粒子的质量和所带电荷量分别为m和q,粒子在电场中运动,由平抛运动规律及牛顿运动定律得,2L=v0t1,L=at12,qE=ma粒子到达O点时沿+y方向的分速度为vy=at1=v0,tanα==1,故α=45°.则粒子在磁场中的速度为v=v0.Bqv=,由几何关系得r=L联立解得=(2)在磁场中运动的周期为T=,粒子在磁场中运动的时间为t2=T=,解得=.针对训练(2017·天津理综)平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y轴负方向的匀强电场,如图2所示.一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动.Q点到y轴的距离为到x轴距离的2倍.粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等.不计粒子重力,问:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比.图2答案(1)v0方向与x轴正方向成45°角斜向上(2)解析(1)在电场中,粒子做类平抛运动,设Q点到x轴距离为L,到y轴距离为2L,粒子的加速度为a,运动时间为t,有2L=v0t①L=at2②设粒子到达O点时沿y轴方向的分速度为vyvy=at③设粒子到达O点时速度方向与x轴正方向夹角为α,有tanα=④联立①②③④式得α=45°⑤即粒子到达O点时速度方向与x轴正方向成45°角斜向上.设粒子到达O点时速度大小为v,由运动的合成有v=⑥联立①②③⑥式得v=v0⑦(2)设电场强度为E,粒子所带电荷量为q,质量为m,粒子在电场中受到的电场力为F,由牛顿第二定律可得F=ma⑧又F=qE⑨设磁场的磁感应强度大小为B,粒子在磁场中做匀速圆周运动的半径为R,所受的洛伦兹力提供向心力,有qvB=m⑩由几何关系可知R=L⑪联立①②⑦⑧⑨⑩⑪式得=[学科素养]例1和针对训练考查了带电粒子在组合场中的运动,按时间的先后顺序分成若干个小过程,在每一个小过程中对粒子进行分析,在解题过程中,回顾了物理概念和规律,锻炼了从物理学视角对客观事物的本质属性、内在规律及相互关系认识的能力,体现了“物理观念”、“科学思维”等学科素养.二、带电粒子在叠加场中的运动带电粒子在叠加场中的运动一般有两种情况:(1)直线运动:如果带电粒子在叠加场中做直线运动,一定是做匀速直线运动,合力为零.(2)圆周运动:如果带电粒子在叠加场中做圆周运动,一定是做匀速圆周运动,重力和电场力的合力为零,洛伦兹力提供向心力.例2(2018·重庆一中高二上期中)如图3所示,空间中的匀强电场水平向右,匀强磁场垂直纸面向里,一带电微粒沿着直线从M运动到N,以下说...