第五节古典概型[全盘巩固]1.投掷两颗骰子,得到其向上的点数分别为m和n,则得到点数相同的概率为()A.B.C.D.解析:选C投掷两颗骰子得到点数相同的情况只有6种,所以所求概率为=.2.一块各面均涂有油漆的正方体被锯成1000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个正方体其三面涂有油漆的概率是()A.B.C.D.解析:选D小正方体三面涂有油漆的有8种情况,故所求概率为=.3.连掷两次骰子分别得到点数m、n,则向量(m,n)与向量(-1,1)的夹角θ>90°的概率是()A.B.C.D.解析:选A因为(m,n)·(-1,1)=-m+n<0,所以m>n.基本事件总共有6×6=36(个),符合要求的有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1)…,,(5,4),(6,1)…,,(6,5),共1+2+3+4+5=15(个).故P==.4.(·杭州模拟)在一个盒子中有编号为1,2的红球2个,编号为1,2的白球2个,现从盒子中摸出两个球,每个球被摸到的概率相同,则摸出的两个球中既含有2种不同颜色又含有2个不同编号的概率是()A.B.C.D.解析:选C从4个球中摸出2个球的情况共有6种,其中2球颜色不同且编号不同的情况有2种,故所求概率P==.5.已知A={1,2,3},B={x∈R|x2-ax+b=0,a∈A,b∈A},则A∩B=B的概率是()A.B.C.D.1解析:选C因为A∩B=B,所以B可能为∅,{1},{2},{3},{1,2},{2,3},{1,3}.当B=∅时,a2-4b<0,满足条件的a,b为a=1,b=1,2,3;a=2,b=2,3;a=3,b=3.当B={1}时,满足条件的a,b为a=2,b=1.当B={2},{3}时,没有满足条件的a,b.当B={1,2}时,满足条件的a,b为a=3,b=2.当B={2,3},{1,3}时,没有满足条件的a,b.故A∩B=B的概率为=.6.(·深圳模拟)一名同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xOy中,以(x,y)为坐标的点落在直线2x+y=8上的概率为()A.B.C.D.解析:选B基本事件的总数是36,随机事件包含的基本事件是(1,6),(2,4),(3,2),根据古典概型的公式,得所求的概率是=.7.(·新课标全国卷Ⅱ)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.解析:任取两个不同的数的情况有:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个,其中和为5的有2个,所以所求概率为=0.2.答案:0.28.(·浙江高考)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于________.解析:设3名男同学分别为a1、a2、a3,3名女同学分别为b1、b2、b3,则从6名同学中任选2名的结果有a1a2,a1a3,a2a3,a1b1,a1b2,a1b3,a2b1,a2b2,a2b3,a3b1,a3b2,a3b3,b1b2,b1b3,b2b3,共15种,其中都是女同学的有3种,所以概率P==.答案:9.从边长为1的正方形的中心和顶点这五点中,随机(等可能)取两点,则该两点间的距离为的概率是________.解析:设正方形ABCD的中心为O,从A、B、C、D、O五点中,随机取两点,所有可能的结果为AB,AC,AD,BC,BD,CD,AO,BO,CO,DO,共10种,其中距离为的结果有AO,BO,CO,DO,共4种,故所求概率为=.答案:10.(·江西高考)小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.(1)写出数量积X的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率.解:(1)X的所有可能取值为-2,-1,0,1.(2)数量积为-2的有·,共1种;数量积为-1的有·,·,·,·,·,·,共6种;数量积为0的有·,·,·,·,共4种;数量积为1的有·,·,·,·,共4种.故所有可能的情况共有15种.所以小波去下棋的概率为P1=;因为去唱歌的概率为P2=,所以小波不去唱歌的概率P=1-P2=1-=.11.将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为5的概率;(2)两数中至少有一个奇数的概率.解:将一颗骰子先后抛掷2次,此问题中含有36个等可能的基本事件.(1)“记两数之和为5”为事件A,则事件A中含有4个基本事件,所以P(A)==.所以两数之和为5的概...