电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

江苏省连云港市灌云县四队中学高中数学 平均变化率教案 苏教版选修1-1VIP免费

江苏省连云港市灌云县四队中学高中数学 平均变化率教案 苏教版选修1-1_第1页
1/3
江苏省连云港市灌云县四队中学高中数学 平均变化率教案 苏教版选修1-1_第2页
2/3
江苏省连云港市灌云县四队中学高中数学 平均变化率教案 苏教版选修1-1_第3页
3/3
江苏省连云港市灌云县四队中学高中数学选修1-1教案:平均变化率教学目标通过大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,体会导数的思想及其内涵。重点难点平均变化率的意义教学过程一、问题情境1、情境:某市2008年4月20日最高气温为33.4℃,而4月19日和4月18日的最高气温分别为24.4℃和18.6℃,短短两天时间,气温陡增14.8℃,闷热中的人们无不感叹:“天气热得太快了!”时间4月18日4月19日4月20日日最高气温18.6℃24.4℃33.4℃该市2007年3月18日到4月18日的日最高气温变化曲线:问题1:你能说出A、B、C三点的坐标所表示意义吗?问题2:分别计算AB、BC段温差结论:气温差不能反映气温变化的快慢程度问题3:如何“量化”(数学化)曲线上升的陡峭程度?曲线AB、BC段几乎成了“直线”,由此联想如何量化直线的倾斜程度?t(d)2030342102030A(1,3.5)B(32,18.6)0C(34,33.4)T(℃)2101二、建构数学一般地,函数f(x)在区间[x1,x2]上的平均变化率为:说明:(1)平均变化率是曲线陡峭程度的“数量化”,曲线的陡峭程度是平均变化率的“视觉化”(2)用平均变化率量化一段曲线的陡峭程度是“粗糙不精确的”,但应注意当x2—x1很小时,这种量化便由“粗糙”逼近“精确”。例1、某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率;由此你能得到什么结论?(1)1kg/月(2)0.4kg/月结论:该婴儿从出生到第3个月体重增加的速度比第6个月到第12个月体重增加的速度要快。例2、水经过虹吸管从容器甲中流向容器乙,ts后容器甲中水的体积(单位:)计算第一个10s内V的平均变化率。解:在区间[0,10]上,体积V的平均变化率为注:负号表示容器甲中水在减少例3、已知函数,分别计算在下列区间上的平均变化率:(1)[1,3];(3)[1,1.1];(2)[1,2];(4)[1,1.001]。(1)函数f(x)在[1,3]上的平均变化率为4(2)函数f(x)在[1,2]上的平均变化率为3(3)函数f(x)在[1,1.1]上的平均变化率为2.1(4)函数f(x)在[1,1.001]上的平均变化率为2.001课外作业书P[T(月)W(kg)639123.56.58.61122121()()fxfxxx3cm2()fxx()fx教学反思3

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

江苏省连云港市灌云县四队中学高中数学 平均变化率教案 苏教版选修1-1

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部