下载后可任意编辑高考数学基础知识点总结高一数学知识点总结1、含n个元素的有限集合其子集共有2n个,非空子集有2n—1个,非空真子集有2n—2个。2、集合中,Cu(A∩B)=(CuA)U(CuB),交之补等于补之并。Cu(AUB)=(CuA)∩(CuB),并之补等于补之交。3、ax2+bx+c0的解集为x,cx2+bx+a>0的解集为>x或xx或x0,a≠0,M>0N>0,那么loga(MN)=logaM+logaN,;loga()=logaM—logaN;logaMn=nlogaM;alogaN=N.换底公式:logaN=;logamlogbnlogck=logbmlogcnlogak=logcmloganlogbk.15、函数图像的变换:(1)水平平移:y=f(x±a)(a>0)的图像可由y=f(x)向左或向右平移a个单位得到;(2)竖直平移:y=f(x)±b(b>0)图像,可由y=f(x)向上或向下平移b个单位得到;(3)对称:若对于定义域内的一切x均有f(x+m)=f(x—m),则y=f(x)的图像关于直线x=m对称;y=f(x)关于(a,b)对称的函数为y!=2b—f(2a—x).下载后可任意编辑(4),学习计划;翻折:①y=|f(x)|是将y=f(x)位于x轴下方的部分以x轴为对称轴将期翻折到x轴上方的图像。②y=f(|x|)是将y=f(x)位于y轴左方的图像翻折到y轴的右方而成的图像。(5)有关结论:①若f(a+x)=f(b—x),在x为一切实数上成立,则y=f(x)的图像关于x=对称。②函数y=f(a+x)与函数y=f(b—x)的图像有关于直线x=对称。15、等差数列中,an=a1+(n—1)d=am+(n—m)d;sn=n=na1+16、若n+m=p+q,则am+an=ap+aq;sk,s2k—k,s3k—2k成以k2d为公差的等差数列。an是等差数列,若ap=q,aq=p,则ap+q=0;若sp=q,sq=p,则sp+q=—(p+q);若已知sk,sn,sn—k,sn=(sk+sn+sn—k)/2k;若an是等差数列,则可设前n项和为sn=an2+bn(注:没有常数项),用方程的思想求解a,b。在等差数列中,若将其脚码成等差数列的项取出组成数列,则新的数列仍旧是等差数列。17、等比数列中,an=a1•qn-1=am•qn-m,若n+m=p+q,则am•an=ap•aq;sn=na1(q=1),sn=,(q≠1);若q≠1,则有=q,若q≠—1,=q;sk,s2k—k,s3k—2k也是等比数列。a1+a2+a3,a2+a3+a4,a3+a4+a5也成等比数列。在等比数下载后可任意编辑列中,若将其脚码成等差数列的项取出组成数列,则新的数列仍旧是等比数列。裂项公式:=—,=•(—),常用数列递推形式:叠加,叠乘,18、弧长公式:l=|α|•r。s扇=•lr=•|α|r2=•;当一个扇形的周长一定时(为L时),其面积为,其圆心角为2弧度。19、Sina(α+β)=sinαcosβ+cosαsinβ;Sina(α—β)=sinαcosβ—cosαsinβ;Cos(α+β)=cosαcosβ—sinαsinβ;cos(α—β)=cosαcosβ+sinαsinβ高一数学知识点总结1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)推断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再推断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题下载后可任意编辑(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);讨论函数的问题一定要注意定义域优先的原则。(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,下载后可任意编辑则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期...