3.(2014•遵义26.(12分))如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圆⊙O交BC于E点,连接DE并延长,交AC于P点,交AB延长线于F.(1)求证:CF=DB;(2)当AD=时,试求E点到CF的距离.(2014•攀枝花,第23题12分)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.(2014年云南省,第23题9分)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.9.(2014•襄阳,第25题10分)如图,A,P,B,C是⊙O上的四个点,∠APC=∠BPC=60°,过点A作⊙O的切线交BP的延长线于点D.(1)求证:△ADP∽△BDA;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)若AD=2,PD=1,求线段BC的长.11.(2014•孝感,第24题10分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若tan∠ABC=,BE=7,求线段PC的长.(1)证明:连结AE,如图, ∠ABC=60°,AB=BC,∴△ABC为等边三角形, AB∥CD,∠DAB=90°,∴∠ADC=∠DAB=90°,∴AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∴BE=CE,CD∥BF,∴∠DCE=∠FBF,在△DCE和△FBE中,,∴△DCE≌△FBE(ASA),∴DE=FE,∴四边形BDCF为平行四边形,∴CF=DB;(2)解:作EH⊥CF于H,如图, △ABC为等边三角形,∴∠BAC=60°,∴∠DAC=30°,在Rt△ADC中,AD=,∴DC=AD=1,AC=2CD=2,∴AB=AC=2,BF=CD=1,∴AF=3,在Rt△ABD中,BD==,在Rt△ADF中,DF==2,∴CF=BD=,EF=DF=, AE⊥BC,∴∠CAE=∠BAE=30°,∴∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,∴∠DPC=90°,在Rt△DPC中,DC=1,∠CDP=30°,∴PC=DC=, ∠HFE=∠PFC,∴Rt△FHE∽Rt△FPC,∴=,即=,∴EH=,即E点到CF的距离为.解:(1)连接PA,如图1所示. PO⊥AD,∴AO=DO. AD=2,∴OA=. 点P坐标为(﹣1,0),∴OP=1.∴PA==2.∴BP=CP=2.∴B(﹣3,0),C(1,0).(2)连接AP,延长AP交⊙P于点M,连接MB、MC.如图2所示,线段MB、MC即为所求作.四边形ACMB是矩形.理由如下: △MCB由△ABC绕点P旋转180°所得,∴四边形ACMB是平行四边形. BC是⊙P的直径,∴∠CAB=90°.∴平行四边形ACMB是矩形.过点M作MH⊥BC,垂足为H,如图2所示.在△MHP和△AOP中, ∠MHP=∠AOP,∠HPM=∠OPA,MP=AP,∴△MHP≌△AOP.∴MH=OA=,PH=PO=1.∴OH=2.∴点M的坐标为(﹣2,).(3)在旋转过程中∠MQG的大小不变. 四边形ACMB是矩形,∴∠BMC=90°. EG⊥BO,∴∠BGE=90°.∴∠BMC=∠BGE=90°. 点Q是BE的中点,∴QM=QE=QB=QG.∴点E、M、B、G在以点Q为圆心,QB为半径的圆上,如图3所示.∴∠MQG=2∠MBG. ∠COA=90°,OC=1,OA=,∴tan∠OCA==.∴∠OCA=60°.∴∠MBC=∠BCA=60°.∴∠MQG=120°.∴在旋转过程中∠MQG的大小不变,始终...