提公因式法(二)一、确定公因式的方法:提公因式法(复习)1、公因式的系数是多项式各项__________________;2、字母取多项式各项中都含有的____________;系数的最大公约数相同字母的最低次幂二、提公因式法分解因式步骤(两步):第一步,找出公因式;第二步,提公因式考考你(1)a3b–2ab3+ab(2)48m2n–24(3)–2x3y2+4x2y–2xyz(1)当相同字母前的符号相同时,则两个多项式相等.如:a-b和-b+a即a-b=-b+a(2)当相同字母前的符号均相反时,则两个多项式互为相反数.如:a-b和b-a即a-b=-(a-b))1((()xyb)yxa练习一1.在下列各式右边括号前添上适当的符号,使左边与右边相等.(1)a+2=___(2+a)(2)-x+2y=___(2y-x)(3)(m-a)2=___(a-m)2(4)(a-b)3=___(-a+b)3(5)(x+y)(x-2y)=___(y+x)(2y-x)+++--2.判断下列各式是否正确?(1)(y-x)2=-(x-y)2(2)(3+2x)3=-(2x+3)3(3)a-2b=-(-2b+a)(4)-a+b=-(a+b)(5)(a-b)(x-2y)=(b-a)(2y-x)否否否否对例1.把a(x-3)+2b(x-3)分解因式.解:a(x-3)+2b(x-3)=(x-3)(a+2b)例2.把a(x-y)+b(y-x)分解因式.解:a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)例3.把6(m-n)3-12(n-m)2分解因式.解:6(m-n)3-12(n-m)2=6(m-n)3-12(m-n)2=6(m-n)2(m-n-2)例4.把6(x+y)(y-x)2-9(x-y)3分解因式.解:6(x+y)(y-x)2-9(x-y)3=6(x+y)(x-y)2-9(x-y)3=3(x-y)2[2(x+y)-3(x-y)]=3(x-y)2(2x+2y-3x+3y)=3(x-y)2(-x+5y)=3(x-y)2(5y-x)(2)5x(a-b)2+10y(b-a)2)3(23)(12)(6mnnm)1((()xyb)yxa分解因式:练习二分解因式:(4)a(a+b)(a-b)-a(a+b)2(5)mn(m+n)-m(n+m)2(6)2(a-3)2-a+3(7)a(x-a)+b(a-x)-c(x-a)练习二