电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

整式的加减重点、难点、例题解析VIP免费

整式的加减重点、难点、例题解析_第1页
1/9
整式的加减重点、难点、例题解析_第2页
2/9
整式的加减重点、难点、例题解析_第3页
3/9
整式的加减重点、难点、例题解析重点、难点例题解析】例1指出下列各式哪些是单项式?哪些是多项式?并指出单项式的系数、次数,多项式是几次几项式.分析:判断一个代数式是单项式还是多项式,要根据它们的定义来判定.要注意区别单项式的次数与多项式的次数概念的不同之处.单项式的次数是单项式中所有字母指数的和,而多项式的次数是多项式里次数最高项的次数.解:(1)5x2y是单项式,系数是5,次数是3(3)-2x2+3x+1是多项式,是二次三项式(5)a是单项式,系数是1,次数是1例2排列下列多项式:(1)9x-7x2+3按x的升幂排列(2)6-3a2-5a按a的降幂排列(3)y4-1+x4+3x2y+3xy2分别按x降幂排列和y的升幂排列分析:排列可以方便计算,但只能“按某一字母”排列,在排列中利用加法交换律交换多项式各项的次序,一定要注意每一项与它的前边符号一起移动.解:(1)3+9x-7x2(2)-3a2+5a+6(3)x4+3x2y+3xy2+y4-1,-1+x4+3x2y+3xy2+y4例3选择题:(1)[a-(b-c)]-[(a-b)-c]应等于[]A.2bB.2cC.-2bD.-2c(2)下列说法正确的是[]D.am2与bm2是同类项(3)三角形的第一条边是a+b,第二条边比第一条边大a+5,第三条边等于2b,那么这个三角形的周长是[]A.3a+3b+5B.2a+4b+5C.3a+4b+5D.3a+4b-5(4)使(Ax2-2xy+y2)-(-x2+Bxy+2y2)=5x2-10xy+Cy2成立的A、B、C依次为[]A.4,-8,-1B.-4,-8,-1C.4,8,-1D.4,8,1分析:(1)根据去括号法则去掉括号后再合并:[a-(b-c)]-[(a-b)-c]=[a-b+c]-[a-b-c]=a-b+c-a+b+c=2c∴答案选B.∴答案是C.(3)求三角形的周长,实际上是求多项式与多项式的和,第二边比第一边大a+5,则第二边长为(a+b)+(a+5)=2a+b+5,那么三角形的周长是(a+b)+(2a+b+5)+2b=3a+4b+5∴答案是C.(4)题,把等式左边化简:Ax2-2xy+y2+x2-Bxy-2y2=(A+1)x2+(-2-B)xy-y2又 (Ax2-2xy+y2)-(-x2+Bxy+2y2)=5x2-10xy+Cy2∴(A+1)x2+(-2-B)xy-y2=5x2-10xy+Cy2根据多项式恒等的意义,它们的同次项系数对应相等∴A+1=5,-2-B=-10,-1=C即A=4,B=8,C=-1.∴答案选C.例4计算:(1)-[-(-2a2)-3b2]-[+(-b)2](2)3(x-y)4-{(x-y)4-[2(x-y)4-5(x-y)4]}分析:(1)去括号的关键是看括号前边是“+”号还是“-”号来决定括号内的各项是否变号.(2)要把(x-y)看作一个整体,合并以(x-y)为整体的同类项.解:(1)-[-(-2a2)-3b2]-[+(-b)2]=-[2a2-3b2]-(-b)2=-2a2+3b2-b2=-2a2+2b2(2)3(x-y)4-{(x-y)4-[2(x-y)4-5(x-y)4]}=3(x-y)4-{(x-y)4-2(x-y)4+5(x-y)4}=3(x-y)4-(x-y)4+2(x-y)4-5(x-y)4=(3-1+2-5)(x-y)4=-(x-y)4例5合并下列各题的同类项:(1)7x-4x2-1-9x+5x2(2)a3-3a2b+5ab2-1+a2b-2ab2-4-a3分析:合并时要不重不漏,合并后一般按字母降幂排列.解:(1)7x-4x2-1-9x+5x2=(-4x2+5x2)+(7x-9x)-1=x2-2x-1(2)a3-3a2b+5ab2-1+a2b-2ab2-4-a3=(a3-a3)+(-3a2b+a2b)+(5ab2-2ab2)+(-1-4)=-2a2b+3ab2-5求5a2-3b2-(a2-b2)-(3a2+4b2)的值.分析:要先合并同类项再代入数值计算,代入的数值是分数或负数时要加括号.解:5a2-3b2-(a2-b2)-(3a2+4b2)=5a2-3b2-a2+b2-3a2-4b2=a2-6b2求A-(B+C).分析:由于A、B、C都是代数式,只要把已知代入即可,代入时要正确使用括号,运算时注意去括号法则.解:A-(B+C)=(3x3-2x2-5x-7)-例8已知(2a-3)2+|2a+4b+1|=0求3(4a+5b-b2)-2(5a-3b+b2)的值.分析:此题要用到()2≥0,||≥0等知识,欲求代数式的值,必须先求出a、b的值由(2a-3)2+|2a+4b+1|=0和(2a-3)2≥0,|2a+4b+1|≥0可以得出2a-3=0,即解: (2a-3)2≥0|2a+4b+1|≥0(2a-3)2+|2a+4b+1|=0∴2a-3=0,2a+4b+1=0得b=-13(4a+5b-b2)-2(5a-3b+b2)=12a+15b-3b2-10a+6b-2b2...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

整式的加减重点、难点、例题解析

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部