考点规范练42两条直线的位置关系一、基础巩固1.已知直线mx+4y-2=0与2x-5y+n=0互相垂直,垂足为(1,p),则m-n+p为()A.24B.20C.0D.-4答案B解析 两直线互相垂直,∴k1·k2=-1,∴-m4·25=-1,∴m=10.又 垂足为(1,p),∴代入直线10x+4y-2=0得p=-2,将(1,-2)代入直线2x-5y+n=0得n=-12,∴m-n+p=20.2.若直线l1:y=k(x-4)与直线l2关于点(2,1)对称,则直线l2恒过定点()A.(0,4)B.(0,2)C.(-2,4)D.(4,-2)答案B解析直线l1:y=k(x-4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2).因为直线l1:y=k(x-4)与直线l2关于点(2,1)对称,所以直线l2恒过定点(0,2).3.若动点A,B分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则AB的中点M到原点的距离的最小值为()A.3❑√2B.2❑√2C.3❑√3D.4❑√2答案A解析依题意知,AB的中点M的集合为与直线l1:x+y-7=0和l2:x+y-5=0距离相等的直线,则M到原点的距离的最小值为原点到该直线的距离.设点M所在直线的方程为l:x+y+m=0,根据平行线间的距离公式得|m+7|❑√2=|m+5|❑√2⇒|m+7|=|m+5|⇒m=-6,即l:x+y-6=0,根据点到直线的距离公式,得中点M到原点的距离的最小值为|-6|❑√2=3❑√2.4.已知平行四边形ABCD的一条对角线固定在A(3,-1),C(2,-3)两点,D点在直线3x-y+1=0上移动,则B点的轨迹方程为()A.3x-y-20=0B.3x-y-10=0C.3x-y-9=0D.3x-y-12=0答案A解析设AC的中点为O,则O(52,-2).设B(x,y)关于点O的对称点为(x0,y0),即D(x0,y0),则{x0=5-x,y0=-4-y,由3x0-y0+1=0得3x-y-20=0.5.如图所示,已知两点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是()A.2❑√10B.6C.3❑√3D.2❑√5答案A解析易得AB所在的直线方程为x+y=4,由于点P关于直线AB对称的点为A1(4,2),点P关于y轴对称的点为A2(-2,0),则光线所经过的路程即A1(4,2)与A2(-2,0)两点间的距离.于是|A1A2|=❑√(4+2)2+(2-0)2=2❑√10.6.若直线l经过直线y=2x+1和y=3x-1的交点,且平行于直线2x+y-3=0,则直线l的方程为.答案2x+y-9=0解析直线y=2x+1与y=3x-1的交点为(2,5).设直线l方程为2x+y+m=0,将(2,5)代入得m=-9.故l方程为2x+y-9=0.7.已知点A(1,3)关于直线y=kx+b对称的点是B(-2,1),则直线y=kx+b在x轴上的截距是.答案56解析由题意得线段AB的中点(-12,2)在直线y=kx+b上,故{3-11+2·k=-1,2=k·(-12)+b,解得{k=-32,b=54,所以直线方程为y=-32x+54.令y=0,即-32x+54=0,解得x=56,故直线y=kx+b在x轴上的截距为56.8.已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P(2,3),求过两点Q1(a1,b1),Q2(a2,b2)的直线方程.解方法一: P(2,3)是已知两条直线的交点,∴{2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0.由题意可知,a1≠a2,∴b1-b2a1-a2=-23.故所求直线方程为y-b1=-23(x-a1),即2x+3y-(2a1+3b1)=0,∴2x+3y+1=0.∴过Q1,Q2两点的直线方程为2x+3y+1=0.方法二: 点P是已知两条直线的交点,∴{2a1+3b1+1=0,2a2+3b2+1=0.可见Q1(a1,b1),Q2(a2,b2)都满足方程2x+3y+1=0.∴过Q1,Q2两点的直线方程为2x+3y+1=0.9.已知两条直线l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8.当m分别为何值时,l1与l2:(1)相交?(2)平行?(3)垂直?解(1)当m=-5时,显然l1与l2相交但不垂直;当m≠-5时,两条直线l1和l2的斜率分别为k1=-3+m4,k2=-25+m,它们在y轴上的截距分别为b1=5-3m4,b2=85+m.由k1≠k2,得-3+m4≠-25+m,即m≠-7,且m≠-1.则当m≠-7,且m≠-1时,l1与l2相交.(2)由{k1=k2,b1≠b2,得{-3+m4=-25+m,5-3m4≠85+m,解得m=-7.则当m=-7时,l1与l2平行.(3)由k1k2=-1,得(-3+m4)·(-25+m)=-1,解得m=-133.则当m=-133时,l1与l2垂直.10.已知光线从点A(-4,-2)射出,到直线y=x上的B点后被直线y=x反射到y轴上的C点,又被y轴反射,这时反射光线恰好过点D(-1,6),求BC所在的直线方程.解作出草图如图所示.设A关于直线y=x的对称点为A',D关于y轴的对称点为D',则易得A'(-2,-4),D'(1,6).由入射角等于反射角可得A'D'所在直线经过点B与点C.故BC所在的直线方程为y-6-4-6=x-1-2-1,即10x-3y+8=0.二、能力提升11.三条直线l1:x-y=0,l2:x+y-2=0,l3:5x-ky-15=0构成一个三角形,则k的取值范围是()A.k∈RB.k∈R,且k≠±1,k≠0C.k∈R,且k≠±5,k≠-10D.k∈R,且k≠±5,k≠1答案C解析若有两...