2016年江苏省南通市高考数学模拟试卷(四)一、填空题:本大题共14小题,每小题5分,共70分.1.已知集合A={x|﹣2<x<2},集合B为自然数集,则A∩B=.2.若复数z=a2﹣1+(a+1)i(a∈R)为纯虚数,则a=.3.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形的面积之和的,且样本容量为160,则中间一组的频数为.4.从2个红球,2个黄球,1个白球中随机取出两个球,则两球颜色不同的概率是.5.根据如图所示的伪代码,可知输出的结果S为.6.三棱锥S﹣ABC中,面SAB,SBC,SAC都是以S为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S﹣ABC的表面积是.7.已知F为双曲线C:2x2﹣my2=4m(m>0)的一个焦点,则点F到C的一条渐近线的距离为.8.与的大小关系是.(用“>”或“<”连接)9.为了得到y=cos(﹣)的图象,只需将y=sin的图象向左平移φ(φ>0)个单位,则φ的最小值为.10.若函数f(x)=,在其定义域上恰有两个零点,则正实数a的值为.11.已知{an},{bn}均为等比数列,其前n项和分别为Sn,Tn,若对任意的n∈N*,总有=,则=.12.如图,在圆O:x2+y2=4上取一点A(﹣,1),E、F为y轴上的两点,且AE=AF,延长AE,AF分别与圆交于点MN.则直线MN的斜率为.13.如图,AB=BC=1,∠APB=90°,∠BPC=45°,则•=.14.已知正实数a、b、c满足+=1,++=1,则实数c的取值范围是.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.15.已知向量,,.(1)若,求向量、的夹角θ;(2)若,函数的最大值为,求实数λ的值.16.如图,平面ABC⊥平面DBC,AB=AC,AB⊥AC,DB=DC;DE⊥平面DBC,BC=2DE,(1)求证:DE∥平面ABC;(2)求证:AE⊥平面ABC.17.现有一个以OA、OB为半径的扇形池塘,在OA、OB上分别取点C、D,作DE∥OA、CF∥OB交弧AB于点E、F,且BD=AC,现用渔网沿着DE、EO、OF、FC将池塘分成如图所示的三种的养殖区域.若OA=1km,,.(1)求区域Ⅱ的总面积;(2)若养殖区域Ⅰ、Ⅱ、Ⅲ的每平方千米的年收入分别是15万元、20万元、10万元,记年总收入为y万元.试问当θ为多少时,年总收入最大?18.如图,在平面直角坐标系xOy中,A、B分别是椭圆:+y2=1的左、右顶点,P(2,t)(t∈R,且t≠0)为直线x=2上一动点,过点P任意引一直线l与椭圆交于C、D,连结PO,直线PO分别和AC、AD连线交于E、F.(1)当直线l恰好经过椭圆右焦点和上顶点时,求t的值;(2)若t=﹣1,记直线AC、AD的斜率分别为k1,k2,求证:+定值;(3)求证:四边形AFBE为平行四边形.19.已知数列{an},{bn}满足:对于任意的正整数n,当n≥2时,an2+bnan﹣12=2n+1.(1)若bn=(﹣1)n,求的值;(2)若数列{an}的各项均为正数,且a1=2,bn=﹣1.设Sn=,Tn=,试比较Sn与Tn的大小,并说明理由.20.已知函数f(x)=x2,g(x)=alnx.(1)若曲线y=f(x)﹣g(x)在x=1处的切线的方程为6x﹣2y﹣5=0,求实数a的值;(2)设h(x)=f(x)+g(x),若对任意两个不等的正数x1,x2,都有>2恒成立,求实数a的取值范围;(3)若在[1,e]上存在一点x0,使得f′(x0)+<g(x0)﹣g′(x0)成立,求实数a的取值范围.[选修4-1:几何证明选讲](任选两个)21.在圆O中,AB,CD是互相平行的两条弦,直线AE与圆O相切于点A,且与CD的延长线交于点E,求证:AD2=AB•ED.[选修4-2:矩阵与变换]22.在平面直角坐标系xOy中,直线x+y﹣2=0在矩阵A=对应的变换作用下得到的直线仍为x+y﹣2=0,求矩阵A的逆矩阵A﹣1.[选修4-4:坐标系与参数方程选讲]23.已知直线l:(t为参数)经过椭圆C:(φ为参数)的右焦点F.(Ⅰ)求m的值;(Ⅱ)设直线l与椭圆C交于A,B两点,求|FA|•|FB|的最大值与最小值.[选修4-5:不等式选讲]24.已知a,b,c均为正数,且a+2b+3c=9.求证:++≥.解答题25.如图,在平面直角坐标系xOy中,抛物线y2=2px(p>0)的准线l与x轴交于点M,过M的直线与抛物线交于A,B两点.设A(x1,y1)到准线l的距离为d,且d=λp(λ>0).(1)若y1=d=1,求抛物线的标准方程;(2)若+λ=,求证:直线AB的斜率为定...