电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

天津市高考数学二轮复习 题型练8大题专项 函数与导数综合问题检测 文-人教版高三全册数学试题VIP免费

天津市高考数学二轮复习 题型练8大题专项 函数与导数综合问题检测 文-人教版高三全册数学试题_第1页
1/7
天津市高考数学二轮复习 题型练8大题专项 函数与导数综合问题检测 文-人教版高三全册数学试题_第2页
2/7
天津市高考数学二轮复习 题型练8大题专项 函数与导数综合问题检测 文-人教版高三全册数学试题_第3页
3/7
题型练8大题专项(六)函数与导数综合问题1.(2017全国Ⅰ,文21)已知函数f(x)=ex(ex-a)-a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.2.设f(x)=xlnx-ax2+(2a-1)x,a∈R.(1)令g(x)=f'(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值.求实数a的取值范围.3.已知函数f(x)=x3+ax2+b(a,b∈R).(1)试讨论f(x)的单调性;(2)若b=c-a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(-∞,-3)∪,求c的值.4.已知函数f(x)=-2xlnx+x2-2ax+a2,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.5.已知函数f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x)(a∈R).(1)若不等式f(x)≥g(x)恒成立,求实数a的取值范围.(2)若函数h(x)有两个极值点x1,x2.①求实数a的取值范围;②当x1∈时,求证:h(x1)-h(x2)>-ln2.6.设函数f(x)=,g(x)=-x+(a+b)(其中e为自然对数的底数,a,b∈R,且a≠0),曲线y=f(x)在点(1,f(1))处的切线方程为y=ae(x-1).(1)求b的值;(2)若对任意x∈,f(x)与g(x)有且只有两个交点,求a的取值范围.##题型练8大题专项(六)函数与导数综合问题1.解(1)函数f(x)的定义域为(-∞,+∞),f'(x)=2e2x-aex-a2=(2ex+a)(ex-a).①若a=0,则f(x)=e2x,在区间(-∞,+∞)单调递增.②若a>0,则由f'(x)=0得x=lna.当x∈(-∞,lna)时,f'(x)<0;当x∈(lna,+∞)时,f'(x)>0.故f(x)在区间(-∞,lna)单调递减,在区间(lna,+∞)单调递增.③若a<0,则由f'(x)=0得x=ln.当x∈时,f'(x)<0;当x∈时,f'(x)>0.故f(x)在区间单调递减,在区间单调递增.(2)①若a=0,则f(x)=e2x,所以f(x)≥0.②若a>0,则由(1)得,当x=lna时,f(x)取得最小值,最小值为f(lna)=-a2lna.从而当且仅当-a2lna≥0,即a≤1时,f(x)≥0.③若a<0,则由(1)得,当x=ln时,f(x)取得最小值,最小值为f=a2.从而当且仅当a2≥0,即a≥-2时f(x)≥0.综上,a的取值范围是[-2,1].2.解(1)由f'(x)=lnx-2ax+2a,可得g(x)=lnx-2ax+2a,x∈(0,+∞).则g'(x)=-2a=,当a≤0时,x∈(0,+∞)时,g'(x)>0,函数g(x)单调递增;当a>0时,x∈时,g'(x)>0,函数g(x)单调递增,x∈时,函数g(x)单调递减.所以当a≤0时,g(x)的单调增区间为(0,+∞);当a>0时,g(x)单调增区间为,单调减区间为.(2)由(1)知,f'(1)=0.①当a≤0时,f'(x)单调递增,所以当x∈(0,1)时,f'(x)<0,f(x)单调递减.当x∈(1,+∞)时,f'(x)>0,f(x)单调递增.所以f(x)在x=1处取得极小值,不合题意.②当01,由(1)知f'(x)在区间内单调递增,可得当x∈(0,1)时,f'(x)<0,x∈时,f'(x)>0.所以f(x)在区间(0,1)内单调递减,在区间内单调递增,所以f(x)在x=1处取得极小值,不合题意.③当a=时,=1,f'(x)在区间(0,1)内单调递增,在区间(1,+∞)内单调递减,所以当x∈(0,+∞)时,f'(x)≤0,f(x)单调递减,不合题意.④当a>时,0<<1,当x∈时,f'(x)>0,f(x)单调递增,当x∈(1,+∞)时,f'(x)<0,f(x)单调递减,所以f(x)在x=1处取极大值,合题意.综上可知,实数a的取值范围为a>.3.解(1)f'(x)=3x2+2ax,令f'(x)=0,解得x1=0,x2=-.当a=0时,因为f'(x)=3x2>0(x≠0),所以函数f(x)在区间(-∞,+∞)内单调递增;当a>0时,x∈∪(0,+∞)时,f'(x)>0,x∈时,f'(x)<0,所以函数f(x)在区间,(0,+∞)内单调递增,在区间上单调递减;当a<0时,x∈(-∞,0)∪时,f'(x)>0,x∈时,f'(x)<0,所以函数f(x)在区间(-∞,0),内单调递增,在区间内单调递减.(2)由(1)知,函数f(x)的两个极值为f(0)=b,fa3+b,则函数f(x)有三个零点等价于f(0)·f=b<0,从而又b=c-a,所以当a>0时,a3-a+c>0或当a<0时,a3-a+c<0.设g(a)=a3-a+c,因为函数f(x)有三个零点时,a的取值范围恰好是(-∞,-3)∪,则在(-∞,-3)内g(a)<0,且在内g(a)>0均恒成立,从而g(-3)=c-1≤0,且g=c-1≥0,因此c=1.此时,f(x)=x3+ax2+1-a=(x+1)[x2+(a-1)x+1-a],因函数有三个零点,则x2+(a-1)x+1-a=0有两个异于-1的不等实根,所以Δ=(a-1)2-4(1-a)=a2+2a-3>0,且(-1)2-(a-1)+1-a≠0,解得a∈(-∞,-3)∪.综上c=1.4.(1)解由已知,函数f(x)的定义域为(0,+∞),g(x)=f'(x)=2(x-1-lnx-a),所以g'(x)=2-.当x∈(0,1)时,g'(x)<0,g(x)单调递减;当x∈(1,+∞)时,g'(x)>0,g(x)单调递增.(2)证明由f'(x)=2(x-1-lnx-a)=0,解得a=x-1-lnx.令φ(x)=-2xlnx+x2-...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

天津市高考数学二轮复习 题型练8大题专项 函数与导数综合问题检测 文-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部