2015-2016学年宁夏银川九中高一(上)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.下列命题正确的是()A.很小的实数可以构成集合B.集合{y|y=x2﹣1}与集合{(x,y)|y=x2﹣1}是同一个集合C.自然数集N中最小的数是1D.空集是任何集合的子集2.若全集A={﹣1,0,1},则集合A的子集共有()A.3个B.5个C.7个D.8个3.设集合A={1,2,4,6},B={2,3,5},则韦恩图中阴影部分表示的集合()A.{2}B.{3,5}C.{1,4,6}D.{3,5,7,8}4.函数的定义域是()A.[2,3)B.(3,+∞)C.[2,3)∩(3,+∞)D.[2,3)∪(3,+∞)5.下列给出函数f(x)与g(x)的各组中,是同一个关于x的函数的是()A.f(x)=x﹣1,g(x)=B.f(x)=2x﹣1,g(x)=2x+1C.f(x)=x2,g(x)=D.f(x)=1,g(x)=x06.函数f(x)=ax﹣(a>0,a≠1)的图象可能是()A.B.C.D.7.下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=(x∈R且x≠0)B.y=()x(x∈R)C.y=x(x∈R)D.y=x3(x∈R)8.已知f(x)是定义在R上的偶函数,f(x)在x∈[0,+∞)上为增函数,且f(﹣3)=0,则不等式f(2x﹣1)<0的解集为()A.(﹣1,2)B.(﹣∞,﹣1)∪(2,+∞)C.(﹣∞,2)D.(﹣1,+∞)9.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程.在如图中纵轴表示离学校的距离,横轴表示出发后的时间,则如图中的四个图形中较符合该学生走法的是()A.B.C.D.10.设a=log0.73,b=2.3﹣0.3,c=0.7﹣3.2,则a,b,c的大小关系是()A.b>a>cB.c>b>aC.c>a>bD.a>b>c11.已知f(x)是偶函数,它在[0,+∞)上是减函数,若f(lgx)>f(1),则实数x的取值范围是()A.(,1)B.(0,)∪(1,+∞)C.(,10)D.(0,1)∪(10,+∞)12.已知a>0,a≠1,f(x)=x2﹣ax.当x∈(﹣1,1)时,均有f(x)<,则实数a的取值范围是()A.(0,]∪[2,+∞)B.[,1)∪(1,2]C.(0,]∪[4,+∞)D.[,1)∪(1,4]二、填空题(本题共4个小题,每小题5分,共20分)13.设A={(x,y)|y=﹣4x+6},B={(x,y)|y=5x﹣3},则A∩B=__________.14.已知函数f(x)=若f(x)=﹣1,则x=__________.15.已知f(x)是定义在[(﹣2,0)∪(0,2)]上的奇函数,当x>0,f(x)的图象如图所示,那么f(x)的值域是__________.16.下列四个命题:(1)函数f(x)在x>0时是增函数,x<0也是增函数,所以f(x)是增函数;(2)若函数f(x)=ax2+bx+2与x轴没有交点,则b2﹣8a<0且a>0;(3)y=x2﹣2|x|﹣3的递增区间为[1,+∞)和[﹣1,0];(4)y=1+x和y=表示相等函数.其中结论是正确的命题的题号是__________.三、解答题(本题共6个小题,共70分,解答本题要求有解答过程,有必要的文字叙述,注意解题规范)17.(1)2×()6+﹣4×﹣×80.25+(﹣2014)0(2)log2.56.25+lg+ln(e)+log2(log216)18.已知函数f(x)=3x2﹣kx﹣8,x∈[1,5].(1)当k=12时,求f(x)的值域;(2)若函数f(x)具有单调性,求实数k的取值范围.19.已知函数f(x)=x+.(1)判断f(x)在(2,+∞)上的单调性并用定义证明;(2)求f(x)在[1,4]的最大值和最小值,及其对应的x的取值.20.已知函数.(1)请在直角坐标系中画出函数f(x)的图象,并写出该函数的单调区间;(2)若函数g(x)=f(x)﹣m恰有3个不同零点,求实数m的取值范围.21.有一长为24米的篱笆,一面利用墙(墙最大长度是10米)围成一个矩形花圃,设该花圃宽AB为x米,面积是y平方米,(1)求出y关于x的函数解析式,并指出x的取值范围;(2)当花圃一边AB为多少米时,花圃面积最大?并求出这个最大面积?22.已知函数f(x)=ax2+bx+1(a,b∈R).(Ⅰ)若f(﹣1)=0且对任意实数x均有f(x)≥0成立,求实数a,b的值;(Ⅱ)在(Ⅰ)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围.2015-2016学年宁夏银川九中高一(上)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.下列命题正确的是()A.很小的实数可以构成集合B.集合{y|y=x2﹣1}与集合{(x,y)|y=x2...