辽宁省五校协作体2015届高三上学期期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合M={x|x2+3x+2<0},集合,则M∪N=()A.{x|x≥﹣2}B.{x|x>﹣1}C.{x|x<﹣1}D.{x|x≤﹣2}2.(5分)已知复数z=1+i,则等于()A.2iB.﹣2iC.2D.﹣23.(5分)如图,若f(x)=logx3,g(x)=log2x,输入x=0.25,则输出h(x)=()A.0.25B.2log32C.﹣log23D.﹣24.(5分)下列选项中,说法正确的是()A.命题“∃x∈R,x2﹣x≤0”的否定是“∃x∈R,x2﹣x>0”B.命题“p∨q为真”是命题“p∧q为真”的充分不必要条件C.命题“若am2≤bm2,则a≤b”是假命题D.命题“在△ABC中,若sinA<,则A<”的逆否命题为真命题5.(5分)一个人以6米/秒的速度去追赶停在交通灯前的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为s=t2米,那么,此人()A.可在7秒内追上汽车B.可在9秒内追上汽车C.不能追上汽车,但其间最近距离为14米D.不能追上汽车,但其间最近距离为7米6.(5分)在△ABC中,(+)•=||2,则三角形ABC的形状一定是()A.等边三角形B.等腰三角形1C.直角三角形D.等腰直角三角形7.(5分)函数f(x)=sin(ωx+φ)(其中|φ|<)的图象如图所示,为了得到y=sinωx的图象,只需把y=f(x)的图象上所有点()A.向右平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向左平移个单位长度8.(5分)抛物线x2=y在第一象限内图象上一点(ai,2ai2)处的切线与x轴交点的横坐标记为ai+1,其中i∈N*,若a2=32,则a2+a4+a6等于()A.64B.42C.32D.219.(5分)已知F1、F2是双曲线(a>b>0)的左右两个焦点,以线段F1F2为直径的圆与双曲线的一条渐近线交于点M,与双曲线交于点N(设M,N均在第一象限),当直线MF1与直线ON平行时,双曲线的离心率取值为e0,则e0所在的区间为()A.(1,)B.()C.()D.(2,3)10.(5分)设k是一个正整数,(1+)k的展开式中第四项的系数为,记函数y=x2与y=kx的图象所围成的阴影部分为S,任取x∈[0,4],y∈[0,16],则点(x,y)恰好落在阴影区域内的概率为()A.B.C.D.11.(5分)长方体ABCD﹣A1B1C1D1中,AB=BC=1,BB1=,设点A关于直线BD1的对称点为P,则P与C1两点之间的距离为()A.1B.C.D.212.(5分)已知函数f(x)是定义在R上的单调增函数,且满足对任意的实数x都有f[f(x)﹣3x]=4,则f(x)+f(﹣x)的最小值等于()A.2B.4C.8D.12二、填空题:本大题共4个小题,每题5分,满分20分,将答案填在答题纸上.13.(5分)在一次游戏中,三个人采用击鼓传花的方式决定最后的表演者.三个人互相传递,每人每次只能传一下,由甲开始传,经过五次传递后,花又被传回给甲,则不同的传递方式有种(用数字作答).14.(5分)设实数x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为10,则a2+b2的最小值为.15.(5分)把矩形ABCD沿对角线BD折起,形成三棱锥C﹣ABD的正视图和俯视图如图所示,则侧视图的面积为.16.(5分)定义域为R的函数f(x)=,若关于x的方程h(x)=[f(x)]2+bf(x)+﹣,有五个不同的零点x1,x2,x3,x4,x5.设x1<x2<x3<x4<x5,且x1,x2,x3,x4,x5构成一个等差数列的前五项,则该数列的前10项和为.三、解答题:本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知函数f(x)=2cos2x﹣sin(2x﹣).(Ⅰ)求函数f(x)的最大值,并写出f(x)取最大值时x的取值集合;(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c若f(A)=,b+c=2.求实数a的取值范围.318.(12分)在某次考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班成绩的茎叶图如图所示,成绩不小于90分的为及格.(1)用样本估计总体,请根据茎叶图对甲乙两个班级的成绩进行比较;(2)求从甲班10名学生和乙班10名学生中各抽取一人,已知有人及格的条件下乙班同学不及格的概率;(3)从甲班10人中抽取一...