2015-2016学年山东省临沂市兰陵县高三(上)期末数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.已知集合A={﹣1,0,1},B={x|1≤2x<4},则A∩B等于()A.{1}B.{﹣1,1}C.{1,0}D.{﹣1,0,1}2.在复平面内,复数z与的对应点关于虚轴对称,则z=()A.2﹣iB.﹣2﹣iC.2+iD.﹣2+i3.下列函数中,在(0,+∞)上单调递减,并且是偶函数的是()A.y=x2B.y=﹣x3C.y=﹣lg|x|D.y=2x4.已知M(2,m)是抛物线y2=2px(p>0)上一点,则“p≥1”是“点M到抛物线焦点的距离不少于3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条5.已知命题p:∀x>0,x+≥4:命题q:∃x0∈R+,2x0=,则下列判断正确的是()A.p是假命题B.q是真命题C.p∧(¬q)是真命题D.(¬p)∧q是真命题6.我校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法,抽取4个班进行调查,若抽到编号之和为48,则抽到的最小编号为()A.2B.3C.4D.57.执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6B.k≤7C.k≤8D.k≤98.函数f(x)=sinx•ln|x|的图象大致是()A.B.C.D.9.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.10.已知定义在R上的可导函数f(x)的导函数为f′(x),满足f′(x)<f(x),且f(x+2)为偶函数,f(4)=1,则不等式f(x)<ex的解集为()A.(﹣2,+∞)B.(0,+∞)C.(1,+∞)D.(4,+∞)二、填空题:本大题共5个小题,每小题5分.、共25分.11.已知,则=.12.已知||=,||=2,若(+)⊥,则与的夹角是.13.向平面区域{(x,y)||x|≤1,|y|≤1}内随机投入一点,则该点落在区域{(x,y)|x2+y2≤1}内的概率等于.14.在高为100米的山顶P处,测得山下一塔顶A和塔底B的俯角分别为30°和60°,则塔AB的高为米.15.已知F是双曲线﹣=1的左焦点,E是该双曲线的右顶点,过F垂直于x轴的直线与双曲线交于A,B两点,若△ABE是等腰直角三角形,则该双曲线的离心率等于.三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.为了了解学生的校园安全意识,某学校在全校抽取部分学生进行了消防知识问卷调查,问卷由三道选择题组成,每道题答对得5分,答错得0分,现将学生答卷得分的情况统计如下:性别人数分数0分5分10分15分女生20x3060男生102535y已知被调查的所有女生的平均得分为8.25分,现从所有答卷中抽取一份,抽到男生的答卷且得分是15分的概率为.(Ⅰ)求x,y的值;(Ⅱ)现要从得分是15分的学生中用分层抽样的方法抽取6人进行消防知识培训,再从这6人中随机抽取2人参加消防知识竞赛,求所抽取的2人中至少有1名男生的概率.17.已知函数f(x)=2asinωxcosωx+2cos2ωx﹣(a>0,ω>0)的最大值为2,x1,x2是集合M={x∈R|f(x)=0}中的任意两个元素,且|x1﹣x2|的最小值为.(1)求函数f(x)的解析式及其对称轴;(2)求f(x)在区间(0,]的取值范围.18.已知数列{an},{bn}分别满足a1a2…an=n(n﹣1)…2•1,b1+b2+…+bn=an2.(1)求数列{an},{bn}的通项公式;(2)若数列{}的前n项和为Sn,若对任意x∈R,anSn>﹣x2﹣2x+9恒成立,求自然数n的最小值.19.如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.20.设函数f(x)=ex﹣ax﹣2.(Ⅰ)求f(x)的单调区间;(Ⅱ)若a=1,k为整数,且当x>0时,(x﹣k)f′(x)+x+1>0,求k的最大值.21.已知椭圆C:=1(a>b>0)的离心率为,其左、右焦点分别是F1,F2,过点F1的直线l交椭圆C于E,G两点,且△EGF2的周长为4(Ⅰ)求椭圆C的方程;(Ⅱ)若过点M(2,0)的直线与椭圆C相交于两点A,B,设P为椭圆上一点,且满足(O为坐标原点),当时,求实数t的取值范围.2015-2016学年山东省临沂市兰陵县高三(上)期末数学试卷(文科)参考答案与试题...