2016年山东省泰安市高考数学二模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的共轭复数在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|y=},B={x|x2﹣2x<0},则()A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B3.设,,是非零向量,已知:命题p:∥,∥,则∥;命题q:若•=0,•=0则•=0,则下列命题中真命题是()A.p∨qB.p∧qC.(¬p)∧(¬q)D.¬p∨q4.=()A.B.﹣1C.D.15.执行如图所示的程序框图,则输出i的值为()A.4B.5C.6D.556.在二项式的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为()A.﹣32B.0C.32D.17.如图,四棱锥S﹣ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角8.已知x,y满足条件,若z=mx+y取得最大值的最优解不唯一,则实数m的值为()A.1或﹣B.1或﹣2C.﹣1或﹣2D.﹣2或﹣9.已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=110.将函数f(x)=sin2x的图象向右平移φ(0<φ<)个单位后得到函数g(x)的图象.若对满足|f(x1)﹣g(x2)|=2的x1、x2,有|x1﹣x2|min=,则φ=()A.B.C.D.二、填空题:本大题共5小题,每小题5分.11.长方形ABCD中,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为.12.已知直线ax+by﹣6=0(a>0,b>0)被圆x2+y2﹣2x﹣4y=0截得的弦长为2,则ab的最大值为.13.如图是一个几何体的三视图,则该几何体的体积是.14.已知函数f(x)=,若存在x1,x2∈R,当0≤x1<4≤x2≤12时,f(x1)=f(x2),则x1f(x2)的最大值是.15.给出下列命题:①已知ξ服从正态分布N(0,δ2),且P(﹣2≤ξ≤2)=0.4,则P(ξ>2)=0.3;②函数f(x﹣1)是偶函数,且在(0,+∞)上单调递增,则f(2)>f(log2)>f[()2]③已知直线l1:ax+3y﹣1=0,l2:x+by+1=0,则l1⊥l2的充要条件是=﹣3,其中正确命题的序号是(把你认为正确的序号都填上).三、解答题:本大题共6小题,满分75分.解答应写出文字说明、证明过程或演算步骤.16.已知a,b,c分别为△ABC三个内角的对边,且cosC+sinC=.(Ⅰ)求∠B的大小;(Ⅱ)若a+c=5,b=7,求的值.17.某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60)六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.(1)请根据直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?课外体育不达标课外体育达标合计男60女110合计(2)现按照“课外体育达标”与“课外体育不达标”进行分层抽样,抽取12人,再从这12名学生中随机抽取3人参加体育知识问卷调查,记“课外体育达标”的人数为ξ,求ξ得分布列和数学期望.附参考公式与数据:K2=P(K2≥k0)0.100.050.0100.0050.001k02.7063.8416.6357.87910.82818.已知正项等差数列{an}的首项为a1=2,前n项和为Sn,若a1+3,2a2+2,a6+8成等比数列.(1)求数列{an}的通项公式;(2)记Pn=+++…+,Qn=+++…+,证明:Pn≥Qn.19.如图,三棱柱ABC﹣A1B1C1中,D、M分别为CC1和A1B的中点,A1D⊥CC1,△AA1B是边长为2的正三角形,A1D=2,BC=1.(1)证明:MD∥平面ABC;(2)证明:BC⊥平面ABB1A1(3)求二面角B﹣AC﹣A1的余弦值.20.已知函数f(x)=x2+mlnx+x(1)求f(x)的单调区间;(2)令g(x)=f(x)﹣x2,试问过点P(1,3)存在多少条直线与曲线y=g(x)相切?并说明理由.21.已知椭圆C:+=1,(a>b>0)的离心率为,F1、F2分别为椭圆...