浙江省深化课程改革协作校联考2015届高三上学期期中数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)设集合A={x|x2﹣3x﹣4>0},B={x|﹣2≤x≤3},则(∁RA)∩B=()A.RB.[﹣2,﹣1]C.[﹣1,3]D.[﹣2,4]2.(5分)已知函数f(x)=Acos(x+φ)(A>0,φ∈R),则“f(x)是偶函数”是“φ=π”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.(5分)某几何体三视图如下图所示,则该几何体的表面积为()A.16﹣πB.16+πC.16﹣2πD.16+2π4.(5分)为了得到函数y=sin(2x+2)的图象,只需把函数y=sin2x的图象上所有的点()A.向左平行移动2个单位长度B.向右平行移动2个单位长度C.向左平行移动1个单位长度D.向右平行移动1个单位长度5.(5分)设等差数列{an}的公差为d,若数列{a1an}为递增数列,则()A.d<0B.d>0C.a1d<0D.a1d>06.(5分)已知a,b,c为三条不同的直线,α和β是两个不同的平面,且a⊂α,b⊂β,α∩β=c.下列命题中正确的是()A.若a与b是异面直线,则c与a,b都相交B.若a不垂直于c,则a与b一定不垂直C.若a∥b,则a∥cD.若a⊥b,a⊥c则α⊥β7.(5分)已知A,B,C是圆O:x2+y2=1上任意的不同三点,若=3+x,则正实数x的取值范围为()A.(0,2)B.(1,4)C.(2,4)D.(3,4)18.(5分)过双曲线=1(a>0,b>0)的右焦点F作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为B,C.若=2,则双曲线的离心率是()A.B.C.5D.9.(5分)在四棱锥P﹣ABCD中,底面ABCD是菱形,PA⊥底面ABCD,M是棱PC上一点.若PA=AC=a,则当△MBD的面积为最小值时,直线AC与平面MBD所成的角为()A.B.C.D.10.(5分)已知非空集合A,B,C,若A={y|y=x2,x∈B},B={y|y=,x∈C},C={y|y=x3,x∈A},则A,B,C的关系为()A.A=B=CB.A=B⊊CC.A⊊B=CD.A⊊B⊊C二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)已知角α终边经过点P(12,﹣5),则sinα=.12.(4分)设f(x)=,则f[f()]=.13.(4分)已知数列{an}的前n项和为Sn,若2Sn=3an﹣2n(n∈N*),则数列{an}的通项公式为.14.(4分)已知实数x,y满足约束条件,若y﹣mx≤2恒成立,则实数m的取值范围为.15.(4分)若函数f(x)=x|2x﹣a|(a>0)在区间[2,4]上单调递增,则实数a的取值范围是.16.(4分)已知抛物线y2=2px过点M(,),A,B是抛物线上的点,直线OA,OM,OB的斜率成等比数列,则直线AB恒过定点.17.(4分)已知实数x,y满足3x+3y=9x+9y,则的取值范围是.三、解答题:本大题共5小题,共72分,解答应写出文字说明、证明过程或演算步骤.218.(14分)在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB=2sin(+B)•sin(﹣B).(Ⅰ)求角B的大小;(Ⅱ)若b=1,求△ABC的面积的最大值.19.(14分)已知等差数列{an}的公差为﹣1,首项为正数,将数列{an}的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{bn}的前3项,(Ⅰ)求数列{an}的通项公式an与前n项和Sn;(Ⅱ)是否存在三个不等正整数m,n,p,使m,n,p成等差数列且Sm,Sn,Sp成等比数列.20.(14分)在多面体ABCDE中,BC=BA,DE∥BC,AE⊥平面BCDE,BC=2DE,F为AB的中点.(Ⅰ)求证:EF∥平面ACD;(Ⅱ)若EA=EB=CD,求二面角B﹣AD﹣E的正切值的大小.21.(15分)若椭圆C1:=1(a>b>0),过点Q(1,)作圆C2:x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点.(Ⅰ)求椭圆的标准方程;(Ⅱ)若直线l与圆C2相切于点P,且交椭圆C1于点M,N,求证:∠MON是钝角.22.(15分)设函数f(x)=x2+px+q,p,q∈R.(Ⅰ)若p+q=3,当x∈[﹣2,2]时,f(x)≥0恒成立,求p的取值范围;(Ⅱ)若不等式|f(x)|>2在区间[1,5]上无解,试求所有的实数对(p,q).浙江省深化课程改革协作校联考2015届高三上学期期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项符合...