电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学一轮复习 第十章 圆锥曲线与方程 10.4 直线与圆锥曲线的位置关系对点训练 理-人教版高三全册数学试题VIP免费

高考数学一轮复习 第十章 圆锥曲线与方程 10.4 直线与圆锥曲线的位置关系对点训练 理-人教版高三全册数学试题_第1页
1/5
高考数学一轮复习 第十章 圆锥曲线与方程 10.4 直线与圆锥曲线的位置关系对点训练 理-人教版高三全册数学试题_第2页
2/5
高考数学一轮复习 第十章 圆锥曲线与方程 10.4 直线与圆锥曲线的位置关系对点训练 理-人教版高三全册数学试题_第3页
3/5
2017高考数学一轮复习第十章圆锥曲线与方程10.4直线与圆锥曲线的位置关系对点训练理1.过点P(-2,0)的直线与抛物线C:y2=4x相交于A、B两点,且|PA|=|AB|,则点A到抛物线C的焦点的距离为()A.B.C.D.2答案A解析设A(x1,y1)、B(x2,y2),分别过点A、B作直线x=-2的垂线,垂足分别为点D、E. |PA|=|AB|,∴又得x1=,则点A到抛物线C的焦点的距离为1+=.2.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为()A.B.C.D.答案D解析由已知得F,故直线AB的方程为y=tan30°·,即y=x-.设A(x1,y1),B(x2,y2),联立将①代入②并整理得x2-x+=0,∴x1+x2=,∴线段|AB|=x1+x2+p=+=12.又原点(0,0)到直线AB的距离为d==.∴S△OAB=|AB|d=×12×=.3.已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为()A.B.C.D.答案D解析由题意可知准线方程x=-=-2,∴p=4,∴抛物线方程为y2=8x.由已知易得过点A与抛物线y2=8x相切的直线斜率存在,设为k,且k>0,则可得切线方程为y-3=k(x+2).联立方程消去x得ky2-8y+24+16k=0.(*)由相切得Δ=64-4k(24+16k)=0,解得k=或k=-2(舍去),代入(*)解得y=8,把y=8代入y2=8x,得x=8,即切点B的坐标为(8,8),又焦点F为(2,0),故直线BF的斜率为.4.已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,OA·OB=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.答案B解析设AB所在直线方程为x=my+t.由消去x,得y2-my-t=0.设A(y,y1),B(y,y2)(不妨令y1>0,y2<0),故y+y=m,y1y2=-t.而OA·OB=yy+y1y2=2.解得y1y2=-2或y1y2=1(舍去).所以-t=-2,即t=2.所以直线AB过定点M(2,0).而S△ABO=S△AMO+S△BMO=|OM||y1-y2|=y1-y2,S△AFO=|OF|×y1=×y1=y1,故S△ABO+S△AFO=y1-y2+y1=y1-y2.由y1-y2=y1+(-y2)≥2=2=3,1得S△ABO+S△AFO的最小值为3,故选B.5.在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为________.答案解析直线x-y+1=0与双曲线x2-y2=1的一条渐近线x-y=0平行,这两条平行线之间的距离为,又P为双曲线x2-y2=1右支上的一个动点,点P到直线x-y+1=0的距离大于c恒成立,则c≤,即实数c的最大值为.6.设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点.若|FQ|=2,则直线l的斜率等于________.答案±1解析设直线AB方程为x=my-1(m≠0),A(x1,y1),B(x2,y2),联立直线和抛物线方程,整理得,y2-4my+4=0,由根与系数关系得y1+y2=4m,y1y2=4.故Q(2m2-1,2m).由|FQ|=2知=2,解得m2=1或m2=0(舍去),故直线l的斜率等于±1(此时直线AB与抛物线相切,为满足题意的极限情况).7.已知动点P到直线l:x=-1的距离等于它到圆C:x2+y2-4x+1=0的切线长(P到切点的距离).记动点P的轨迹为曲线E.(1)求曲线E的方程;(2)点Q是直线l上的动点,过圆心C作QC的垂线交曲线E于A,B两点,设AB的中点为D,求的取值范围.解(1)由已知得,圆心为C(2,0),半径r=.设P(x,y),依题意可得|x+1|=,整理得y2=6x.故曲线E的方程为y2=6x.(2)设直线AB的方程为my=x-2,则直线CQ的方程为y=-m(x-2),可得Q(-1,3m).将my=x-2代入y2=6x并整理可得y2-6my-12=0,设A(x1,y1),B(x2,y2),则y1+y2=6m,y1y2=-12,D(3m2+2,3m),|QD|=3m2+3.|AB|=2,所以2==∈,故∈.8.已知椭圆E:+=1(a>b>0)过点(0,),且离心率e=.(1)求椭圆E的方程;(2)设直线l:x=my-1(m∈R)交椭圆E于A,B两点,判断点G与以线段AB为直径的圆的位置关系,并说明理由.解解法一:(1)由已知得,解得所以椭圆E的方程为+=1.2(2)设点A(x1,y1),B(x2,y2),AB的中点为H(x0,y0).由得(m2+2)y2-2my-3=0,所以y1+y2=,y1y2=-,从而y0=.所以|GH|2=2+y=2+y=(m2+1)y+my0+.====(1+m2)(y-y1y2),故|GH|2-=my0+(1+m2)y...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学一轮复习 第十章 圆锥曲线与方程 10.4 直线与圆锥曲线的位置关系对点训练 理-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部