电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学大一轮复习 第二章 导数及其应用 第四节 导数的综合应用检测 理 新人教A版-新人教A版高三全册数学试题VIP免费

高考数学大一轮复习 第二章 导数及其应用 第四节 导数的综合应用检测 理 新人教A版-新人教A版高三全册数学试题_第1页
1/4
高考数学大一轮复习 第二章 导数及其应用 第四节 导数的综合应用检测 理 新人教A版-新人教A版高三全册数学试题_第2页
2/4
高考数学大一轮复习 第二章 导数及其应用 第四节 导数的综合应用检测 理 新人教A版-新人教A版高三全册数学试题_第3页
3/4
第四节导数的综合应用限时规范训练(限时练·夯基练·提能练)A级基础夯实练1.(2018·安徽合肥一中等六校联考)已知函数f(x)=(x+a-1)ex,g(x)=x2+ax,其中a为常数.(1)当a=2时,求函数f(x)在点(0,f(0))处的切线方程;(2)若对任意的x∈[0,+∞),不等式f(x)≥g(x)恒成立,求实数a的取值范围.解:(1)因为a=2,所以f(x)=(x+1)ex,所以f(0)=1,f′(x)=(x+2)ex,所以f′(0)=2,所以切点的坐标为(0,1),所以切线方程为2x-y+1=0.(2)令h(x)=f(x)-g(x),由题意得h(x)min≥0在x∈[0,+∞)上恒成立,h(x)=(x+a-1)ex-x2-ax,所以h′(x)=(x+a)(ex-1),①若a≥0,则当x∈[0,+∞)时,h′(x)≥0,所以函数h(x)在[0,+∞)上单调递增,所以h(x)min=h(0)=a-1,则a-1≥0,得a≥1.②若a<0,则当x∈[0,-a)时,h′(x)≤0,当x∈(-a,+∞)时,h′(x)≥0,所以函数h(x)在[0,-a)上单调递减,在(-a,+∞)上单调递增,所以h(x)min=h(-a),又h(-a)<h(0)=a-1<0,所以不合题意.综上,实数a的取值范围为[1,+∞).2.(2018·青岛调研)设函数f(x)=-klnx,k>0.(1)求f(x)的单调区间和极值.(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.解:(1)由f(x)=-klnx(k>0)得f′(x)=x-=.由f′(x)=0解得x=.f(x)与f′(x)在区间(0,+∞)上的情况如下:x(0,)(,+∞)f′(x)-0+f(x)所以,f(x)的单调递减区间是(0,),单调递增区间是(,+∞);f(x)在x=处取得极小值f()=.(2)证明:由(1)知,f(x)在区间(0,+∞)上的最小值为f()=.因为f(x)存在零点,所以≤0,从而k≥e.当k=e时,f(x)在区间(1,)上单调递减,且f()=0,所以x=是f(x)在区间(1,]上的唯一零点.当k>e时,f(x)在区间(0,)上单调递减,且f(1)=>0,f()=<0,所以f(x)在区间(1,]上仅有一个零点.综上可知,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.3.(2018·安徽十大名校联考)设函数f(x)=ex-x2-ax-1(e为自然对数的底数),a∈R.(1)证明:当a<2-2ln2时,f′(x)没有零点;(2)当x>0时,f(x)+x≥0恒成立,求a的取值范围.解:(1)证明: f′(x)=ex-2x-a,令g(x)=f′(x),∴g′(x)=ex-2.令g′(x)<0,解得x<ln2;令g′(x)>0,解得x>ln2,∴f′(x)在(-∞,ln2)上单调递减,在(ln2,+∞)上单调递增,∴f′(x)min=f′(ln2)=2-2ln2-a.当a<2-2ln2时,f′(x)min>0,∴f′(x)的图象恒在x轴上方,∴f′(x)没有零点.(2)当x>0时,f(x)+x≥0恒成立,即ex-x2-ax+x-1≥0恒成立,∴ax≤ex-x2+x-1,即a≤-x-+1恒成立.令h(x)=-x-+1(x>0),则h′(x)=.当x>0时,ex-x-1>0恒成立,令h′(x)<0,解得0<x<1,令h′(x)>0,解得x>1,∴h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴h(x)min=h(1)=e-1.∴a的取值范围是(-∞,e-1].B级能力提升练4.(2018·全国卷Ⅰ)已知函数f(x)=aex-lnx-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥时,f(x)≥0.解:(1)f(x)的定义域为(0,+∞),f′(x)=aex-.由题设知,f′(2)=0,所以a=.从而f(x)=ex-lnx-1,f′(x)=ex-.当0<x<2时,f′(x)<0;当x>2时,f′(x)>0.所以f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明:当a≥时,f(x)≥-lnx-1.设g(x)=-lnx-1,则g′(x)=-.当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点.故当x>0时,g(x)≥g(1)=0.因此,当a≥时,f(x)≥0.5.(2018·太原调研)设函数f(x)=e2x-alnx.(1)讨论f(x)的导函数f′(x)零点的个数;(2)证明:当a>0时,f(x)≥2a+aln.解:(1)f(x)的定义域为(0,+∞),f′(x)=2e2x-(x>0).当a≤0时,f′(x)>0,f′(x)没有零点;当a>0时,设u(x)=e2x,v(x)=-,因为u(x)=e2x在(0,+∞)上单调递增,v(x)=-在(0,+∞)上单调递增,所以f′(x)在(0,+∞)上单调递增.又f′(a)>0,当b满足0<b<且b<时,f′(b)<0,故当a>0时,f′(x)存在唯一零点.(2)证明:由(1)可设f′(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时,f′(x)<0;当x∈(x0...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学大一轮复习 第二章 导数及其应用 第四节 导数的综合应用检测 理 新人教A版-新人教A版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部